The distribution of initiation factor 2(eIF-2) and elongation factor 2(EF-2) in cultured mouse embryo fibroblasts was studied and compared with the distribution of ribosomes. We used immunofluorescence microscopy with monospecific antibodies to eIF-2, EF-2, and proteins S3a and S7 of the small ribosomal subunit. Ribosomes and factors eIF-2 and EF-2 were found mainly in the vicinity of the cell nucleus. This perinuclear zone coincides with the endoplasm - the central part of the cell containing numerous membraneous organelles and inclusions. Besides the perinuclear zone, small stained regions could be seen at the periphery of some cells. After treatment of the cells with Triton X-100 in a buffer conditions, that stabilizes the major cytoskeletal structures, some of the ribosomes, eIF-2, and EF-2 remained bound to the insoluble material. These components were found near the nucleus and some were located along the microfilament bundles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0309-1651(87)90134-2DOI Listing

Publication Analysis

Top Keywords

eif-2 ef-2
12
mouse embryo
8
embryo fibroblasts
8
perinuclear zone
8
immunofluorescent localization
4
localization protein
4
protein synthesis
4
synthesis components
4
components mouse
4
fibroblasts distribution
4

Similar Publications

Sordarin bound eEF2 unlocks spontaneous forward and reverse translocation on CrPV IRES.

Nucleic Acids Res

July 2023

Department of Biological Sciences, Auburn University, Auburn, AL36849, USA.

The Intergenic Region Internal Ribosome Entry Sites (IGR IRESs) of Discistroviridae promote protein synthesis without initiation factors, with IRES translocation by elongation factor 2 (eEF2) being the first factor-catalysed reaction. Here, we developed a system that allows for the observation of intersubunit conformation of eukaryotic ribosomes at the single-molecule level by labeling rRNA. We used it to follow translation initiation and subsequent translocation of the cricket paralysis virus IRES (CrPV IRES).

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Are myofibre protein signalling responses to ex vivo dynamic contractions altered by accustomization to voluntary endurance training in rats? What is the main finding and its importance? In response to ex vivo dynamic muscle contractions, canonical myofibre protein signalling pertaining to metabolic transcriptional regulation, as well as translation initiation and elongation, was not influenced by prior accustomization to voluntary endurance training in rats. Accordingly, intrinsic myofibre protein signalling responses to standardized contractile activity may be independent of prior exercise training in rat skeletal muscle.

Abstract: Skeletal muscle training status may influence myofibre regulatory protein signalling in response to contractile activity.

View Article and Find Full Text PDF

Amyloid beta induces Fmr1-dependent translational suppression and hyposynchrony of neural activity via phosphorylation of eIF2α and eEF2.

J Cell Physiol

July 2022

Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Alzheimer's disease (AD) is the most common cause of dementia, with the accumulation of amyloid beta peptide (Aβ) being one of the main causes of the disease. Fragile X mental retardation protein (FMRP), encoded by fragile X mental retardation 1 (Fmr1), is an RNA-binding protein that represses translation of its bound mRNAs or exerts other indirect mechanisms that result in translational suppression. Because the accumulation of Aβ has been shown to cause translational suppression resulting from the elevated cellular stress response, in this study we asked whether and how Fmr1 is involved in Aβ-induced translational regulation.

View Article and Find Full Text PDF

Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities.

View Article and Find Full Text PDF

This Editorial highlights a study by Zimmermann and coworkers in the current issue of Journal of Neurochemistry. The authors' link suppression of PKR-like endoplasmatic reticulum kinase (PERK) activity to eukaryotic elongation factor 2 (eEF2) dephosphorylation and mTORC1-independent high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in acute hippocampal slices from PERK forebrain conditional knockout mice. The results suggest that functional interaction between the signaling pathways controlling different phases of the mRNA translation process is necessary for long-term plasticity in the hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!