Background: Conventional medicines, along with herbal formulations of Chinese, serve as the primary source and hub of active new drugs where the initial research concentrates on the extraction and isolation of bioactive lead compound(s) to treat several diseases largely for cancer. Plant-derived natural products and their analogs reveal a significant source of several clinically useful anticancer agents. Herbs and herbal derived active compounds play an unavoidable role in the treatment, drug discovery and delivery for decades, as evidenced by numerous existing marked drugs and various cancer-related molecular targets in clinical development.

Objective: Solubility, resistance and metabolic limitations of the drug can be overcome by suitable molecular modifications. Due to enhancements in tumor targeting technology, some agents who failed in earlier clinical studies are also stimulating renewed interest. In this connection, In Vitro-In Vivo Correlation (IVIVC) plays an important role in the development of dosage forms in the field of pharmaceutical technology.

Conclusion: IVIVC tool fastens and improves the drug development process and product quality, which is also utilized in internal control for scale-up to improve formulations and alternative production processes. Most importantly, this IVIVC tool lessens the number of human studies during new pharmaceuticals developments. In this review, we would like to grab the attention of readers to the importance and significance of IVIVC for natural products of anticancer drugs examples such as Docetaxel, Etoposide phosphate, 6-Gingerol, Capsaicin, etc.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389450121999201113110433DOI Listing

Publication Analysis

Top Keywords

vitro-in vivo
8
anticancer drugs
8
natural products
8
ivivc tool
8
ivivc
5
potential role
4
role vitro-in
4
vivo correlations
4
correlations ivivc
4
ivivc development
4

Similar Publications

Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.

View Article and Find Full Text PDF

Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).

View Article and Find Full Text PDF

Therapeutic potential inhibitor for dipeptidyl peptidase IV in diabetic type 2: in silico approaches.

3 Biotech

January 2025

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia.

Diabetes mellitus (DM) is a metabolic disease marked by an excessive rise in blood sugar (glucose) levels caused by a partial or total absence of insulin production, combined with alterations in the metabolism of proteins, lipids, and carbohydrates. The International Diabetes Federation estimates that 425 million individuals globally had diabetes in 2017 which will be 629 million by 2045. Several medications are used to treat DM, but they have limitations and side effects including weight gain, nausea, vomiting, and damage to blood vessels and kidneys.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!