Intrinsically disordered protein-regions (IDRs) make up roughly 30% of the human proteome and are central to a wide range of biological processes. Given a lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent exposed. This extensive surface area, coupled with the absence of strong intramolecular contacts, makes IDRs inherently sensitive to their chemical environment. We report a combined experimental, computational, and analytical framework for high-throughput characterization of IDR sensitivity. Our framework reveals that IDRs can expand or compact in response to changes in their solution environment. Importantly, the direction and magnitude of conformational change depend on both protein sequence and cosolute identity. For example, some solutes such as short polyethylene glycol chains exert an expanding effect on some IDRs and a compacting effect on others. Despite this complex behavior, we can rationally interpret IDR responsiveness to solution composition changes using relatively simple polymer models. Our results imply that solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation to biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092420PMC
http://dx.doi.org/10.1021/acs.jpclett.0c02822DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
chemical environment
8
idrs
6
revealing hidden
4
hidden sensitivity
4
sensitivity intrinsically
4
disordered proteins
4
proteins chemical
4
environment intrinsically
4
disordered protein-regions
4

Similar Publications

This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.

Cell Rep Phys Sci

November 2024

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.

View Article and Find Full Text PDF

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!