Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks. In this study, we present transparent, flexible, and self-healable TA loudspeakers based on silver nanowire (AgNW)-poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit significant self-healing for repairing the surface damages that are caused due to the dynamic reconstruction of reversible bulky urea bonds in PUHU. The fabricated self-healable TA loudspeakers generate a sound pressure level of 61 dB at 10 kHz frequency (alternating current (AC) 7 V/direct current (DC) 1 V). In particular, the TA speakers are able to recover the original sound after healing the surface damages of electrodes at 95 °C and 80% relative humidity within 5 min. We believe that the technique proposed in this study provides a robust and powerful platform for the fabrication of transparent and flexible TA loudspeakers with excellent self-healing, which can be applied in flexible and wearable acoustic electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c12199 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
Soft ionic conductors are promising candidates for epidermal electrodes, flexible sensors, ionic skins, and other soft iontronic devices. However, their inadequate ionic conductivity and mechanical properties (such as toughness and adhesiveness) are still the main constraints for their wide applications in wearable bioelectronics. Herein, an all-biocompatible composite gel with a double-network (DN) strategy is proposed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany.
Despite the significant advancements of liver surgery in the last few decades, the survival rate of patients with liver and pancreatic cancers has improved by only 10% in 30 years. Precision medicine offers a patient-centered approach, which, when combined with machine learning, could enhance decision making and treatment outcomes in surgical management of ihCC. This study aims to develop a decision support model to optimize treatment strategies for patients with ihCC, a prevalent primary liver cancer.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy.
This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Ten custom-made 3D-printed vascular models were produced using computed tomography angiography (CTA) scans of ten patients diagnosed with PAD. CTA images were analyzed using Syngo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!