Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c06212DOI Listing

Publication Analysis

Top Keywords

poly- perfluoroalkyl
8
perfluoroalkyl substances
8
treatment systems
8
water treatment
8
electrode materials
8
water
6
treatment
5
facing challenge
4
challenge poly-
4
substances water
4

Similar Publications

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Nontarget Analysis and Characterization of a Group of Abundant Polyfluoroalkyl Substances─Fluorinated Benzoylurea Pesticides and Their Analogues and Transformation Products in Fish by LC-HRMS and Chemical Species-Specific Algorithms.

J Agric Food Chem

January 2025

Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs.

View Article and Find Full Text PDF

Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds.

Science

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.

View Article and Find Full Text PDF

Photodegradation of steroid hormone micropollutants with palladium-porphyrin coated porous PTFE of varied morphological and optical properties.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.

View Article and Find Full Text PDF

Per- and Polyfluoroalkyl Substances in Semen Associated with Repeated Measures of Semen Quality in Healthy Adult Men.

Environ Sci Technol

January 2025

College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.

Although epidemiological studies have explored the association between poly- and perfluoroalkyl substances (PFAS) concentrations and semen quality, existing findings are often inconsistent. Our work aimed to explore the association of PFAS in plasma and semen with repeated measures of semen quality parameters in healthy adults. Plasma was collected at the initial recruitment and semen was collected at least once within five predetermined intervals during an approximately 3-month period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!