The limited effectiveness of current therapeutics against malignant brain gliomas has led to an urgent need for development of new formulations against these tumors. Chelator Dp44mT (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone) presents a promising candidate to defeat gliomas due to its exceptional anti-tumor activity and its unique ability to overcome multidrug resistance. The goal of this study is to develop a targeted nano-carrier for Dp44mT delivery to glioma tumors and to assess its therapeutic efficacy in vitro and in vivo. Dp44mT is loaded into poly(ethylene glycol) (PEG)ylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) decorated with glioma-targeting ligand Interlukin 13 (IL13). IL13-conjugation enhanced the NP uptake by glioma cells and also improved their transport across an in vitro blood-brain-barrier (BBB) model. This targeted formulation showed an outstanding toxicity towards glioma cell lines and patient-derived stem cells in vitro, with IC values less than 125 nM, and caused no significant death in healthy brain microvascular endothelial cells. In vivo, when tested on a xenograft mouse model, IL13-conjugated Dp44mT-NPs reduced the glioma tumor growth by ≈62% while their untargeted counterparts reduced the tumor growth by only ≈16%. Notably, this formulation does not cause any significant weight loss or kidney/liver toxicity in mice, demonstrating its great therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202001261DOI Listing

Publication Analysis

Top Keywords

vitro vivo
8
tumor growth
8
tumor targeted
4
targeted delivery
4
delivery anti-cancer
4
anti-cancer therapeutic
4
vitro
4
therapeutic vitro
4
vivo evaluation
4
evaluation limited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!