Purpose: For a number of different treatment types [such as Total Body Irradiation (TBI), etc.] most institutions utilize tables from commissioned databooks to perform the dose calculations. Each time one manually looks up data from a large table and then copies the numbers for a manual calculation, there is potential for errors. While a second check effectively mitigates the potential error from such calculations, information regarding the frequency and nature of such mistakes is important to develop protocols and workflows that avoid related errors.

Methods: Five years' worth of TBI calculations were reviewed. Each calculation was re-performed and evaluated against the original calculation and original second check. Any discrepancies were noted and those discrepancies were checked to see if the number was the result of misreading from the look-up table, a typo, copying/skipping partially redundant steps, or rounding/avoiding interpolation. The number of calculations that contained these various types of discrepancies was tallied and percentages representing the frequency of said discrepancies were derived.

Results: All of the discrepancies only resulted in a monitor unit (MU) calculation difference of <1.7%. Typos, looking up wrong values from tables, rounding/avoiding interpolation, and skipping steps occurred in 10.4% ( 3.1%), 6.3% ( 2.5%), 53.1% ( 5.1%), and 4.2% ( 2.0%) of MU calculations, respectively.

Conclusions: While all of the discrepancies only resulted in a monitor unit (MU) calculation difference of <1.7%, this review shows how frequently various discrepancies can occur. Typos and rounding/avoiding interpolation are the steps most likely to potentially cause a miscalculation of MU. To avoid direct human interaction on such a large repetitive scale, creating forms that calculate MU automatically from initial measurement data would reduce the incidences that numbers are written/transcribed and eliminate the need to look up data in a table, thus reducing the chance for error.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882103PMC
http://dx.doi.org/10.1002/acm2.13091DOI Listing

Publication Analysis

Top Keywords

dose calculations
8
second check
8
calculations
5
discrepancies
5
fmea occurrence
4
occurrence values
4
values failure
4
failure modes
4
modes occurring
4
occurring look-up
4

Similar Publications

[Investigation of general toxic effects of Relatox in comparison with Dysport].

Zh Nevrol Psikhiatr Im S S Korsakova

December 2024

OOO NBC «Pharmbiomed», Moscow, Russia.

Objective: To evaluate the toxic effects of the agent Relatox on mature outbred rats and mice in an acute experiment in comparison with the registered analogue Dysport.

Material And Methods: Based on the aim of experiment, the acute toxic effects of Relatox and Dysport were assessed on two animal species: rats and mice at intraperitoneal and intramuscular administration at dose levels that made it possible to calculate the toxicological parameter values (initially 10-150 U/kg with subsequent usage of additional doses 20 U/kg to 300 U/kg depending on the agent and route of administration). The LD values and other acute toxic parameters were calculated using probit analysis.

View Article and Find Full Text PDF

Computational exploration of injection strategies for improving medicine distribution in the liver.

Comput Biol Med

December 2024

Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran. Electronic address:

Background And Objectives: The liver, a vital metabolic organ, is always susceptible to various diseases that ultimately lead to fibrosis, cirrhosis, acute liver failure, chronic liver failure, and even cancer. Optimal and specific medicine delivery in various diseases, hepatectomy, shunt placement, and other surgical interventions to reduce liver damage, transplantation, optimal preservation, and revival of the donated organ all rely on a complete understanding of perfusion and mass transfer in the liver. This study aims to simulate the computational fluid dynamics of perfusion and the temporal-spatial distribution of a medicine in a healthy liver to evaluate the hemodynamic characteristics of flow and medicine transport with the purpose of more effective liver treatment.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Importance: Increasing the understanding of vaccine effectiveness (VE) against levels of severe influenza in children could help increase uptake of influenza vaccination and strengthen vaccine policies globally.

Objective: To investigate VE in children by severity of influenza illness.

Design, Setting, And Participants: This case-control study with a test-negative design used data from 8 participating medical centers located in geographically different US states in the New Vaccine Surveillance Network from November 6, 2015, through April 8, 2020.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!