Forging customizable compounds into arbitrary shapes and structures has the potential to revolutionize functional materials, where independent control over shape and composition is essential. Current self-assembly strategies allow impressive levels of control over either shape or composition, but not both, as self-assembly inherently entangles shape and composition. Herein, independent control over shape and composition is achieved by chemical conversion reactions on nanocrystals, which are first self-assembled in nanocomposites with programmable microscopic shapes. The multiscale character of nanocomposites is crucial: nanocrystals (5-50 nm) offer enhanced chemical reactivity, while the composite layout accommodates volume changes of the nanocrystals (≈25%), which together leads to complete chemical conversion with full shape preservation. These reactions are surprisingly materials agnostic, allowing a large diversity of chemical pathways, and development of conversion pathways yielding a wide selection of shape-controlled transition metal chalcogenides (cadmium, manganese, iron, and nickel oxides and sulfides). Finally, the versatility and application potential of this strategy is demonstrated by assembling: 1) a scalable and highly reactive nickel catalyst for the dry reforming of butane, 2) an agile magnetic-controlled particle, and 3) an electron-beam-controlled reversible microactuator with sub-micrometer precision. Previously unimaginable customization of shape and composition is now achievable for assembling advanced functional components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202003999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!