Soleus muscle flap as coverage tissue is a possible surgical solution adopted to cover the wounds due to open fractures. Despite this procedure presents many clinical advantages, relatively poor information is available about the loss of functionality of triceps surae of the treated leg. In this study, a group of patients who underwent a soleus muscle flap surgical procedure has been analyzed through the heel rise test (HRT), in order to explore the triceps surae residual functionalities. A frequency band analysis was performed in order to assess whether the residual heads of triceps surae exhibit different characteristics with respect to both the non-treated lower limb and an age-matched control group. Then, an in-depth analysis based on a machine learning approach was proposed for discriminating between groups by generalizing across new unseen subjects. Experimental results showed the reliability of the proposed analyses for discriminating between-group at a specific time epoch and the high interpretability of the proposed machine learning algorithm allowed the temporal localization of the most discriminative frequency bands. Findings of this study highlighted that significant differences can be recognized in the myoelectric spectral characteristics between the treated and contralateral leg in patients who underwent soleus flap surgery. These experimental results may support the clinical decision-making for assessing triceps surae performance and for supporting the choice of treatment in plastic and reconstructive surgery. Graphical Abstract The Graphical abstract presents the scope of the proposed analysis of myoelectric signals of soleus and gastrocnemius muscles of patiens groups during Hell Rise Test, highlighting the applied methods and the obtained results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-020-02286-7 | DOI Listing |
Transl Sports Med
December 2024
Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Persisting deficits are often seen years after an Achilles tendon rupture despite dedicated rehabilitation efforts. A possible reason for reduced function is elongation of the tendon and accompanying shortening of the muscle. Strength training with focus on the eccentric component of loading leads to longer muscle fascicles in healthy persons.
View Article and Find Full Text PDFJ Orthop Res
January 2025
Department of Physical Therapy, University of Delaware, Newark, Delaware, USA.
A high proportion of individuals with Achilles tendinopathy continue to demonstrate long-term symptoms and functional impairments after exercise treatment. Thus, there is a need to delineate patient presentations that may require alternative treatment. The objective of this study was to evaluate if the presence of metabolic risk factors relates to tendon symptoms, psychological factors, triceps surae structure, and lower limb function in individuals with Achilles tendinopathy.
View Article and Find Full Text PDFBr J Sports Med
January 2025
Department of Movement Science, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
Gait Posture
December 2024
Department of Sport Biomechanics and Motor Behavior, University of Mazandaran, Babolsar, Iran. Electronic address:
Background: Altered muscle activity during gait can change the function of the musculoskeletal system and increase the risk of injury. This systematic review and meta-analysis study aimed to investigate the effect of wearing heeled shoes during gait on muscle activity.
Research Question: Does wearing different heeled shoes (low: 1.
J Neurophysiol
January 2025
Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States.
Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!