Band structure tuning of α-MoO by tin intercalation for ultrafast photonic applications.

Nanoscale

Institute of Microscale Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.

Published: November 2020

van der Waals (vdW) transition metal oxides have attracted extensive attention due to their intriguing physical and chemical properties. However, primary drawbacks of these materials are the lack of band structure tunability and substandard optical properties, which severely hinder their implementation in nanophotonic applications. Atomic intercalation is an emerging structural engineering approach for two-dimensional vdW materials to engineer the atomic structure and modify the optical properties, thereby broadening their range of applications. Herein, we synthesized tin-intercalated ultrathin α-MoO3 (Sn-MoO3) nanoribbons via chemical intercalation method and then investigated the broadband nonlinear optics (NLO) of stable few-layer α-MoO3 by performing a Z-scan laser measurement and femtosecond-resolved transient absorption (TA) spectroscopy. Sn-MoO3 showed a stable structure of Mo-O-Sn-O-Mo and a shorter relaxation time than pristine MoO3, indicating the accelerated recombination process of electrons and holes. Furthermore, Sn-MoO3 nanoribbons were used as an optical saturable absorber for ultrafast photonics; a highly stable femtosecond laser with a pulse width of 467 fs was generated from a single-mode fiber in the telecommunication band (1550 nm). These results indicate that atomic intercalation is an effective way to modulate the band structure and nonlinear optical properties of α-MoO3, which hold a great potential in the generation of ultrafast mode-locked laser pulses for optical communication technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr05935hDOI Listing

Publication Analysis

Top Keywords

band structure
12
optical properties
12
atomic intercalation
8
sn-moo3 nanoribbons
8
optical
5
band
4
structure tuning
4
tuning α-moo
4
α-moo tin
4
intercalation
4

Similar Publications

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Cationic Modification in Hybrid Iodates: A Pathway to Superior Performance.

Inorg Chem

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The utilization of nonlinear optical (NLO) crystals plays a crucial role in the contemporary laser industry, and the advancement of novel NLO-active units is essential for the exploration of NLO materials. Two novel organic-inorganic hybrid iodates, designated as (CNH)MoO(IO)·3HO () and (CNIH)MoO(IO)·4HO () were synthesized via mild hydrothermal methods, exhibiting band gaps of 3.75 and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!