A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient production of γ-aminobutyric acid by glutamate decarboxylase immobilized on an amphiphilic organic-inorganic hybrid porous material. | LitMetric

A novel organic-inorganic hybrid porous material (KCS-2), containing both lipophilic and hydrophilic nanospaces to mimic a lipid bilayer, was utilized as an immobilization support and reaction accelerator for glutamate decarboxylase (GADβ). Upon evaluation of the adsorption of GADβ on KCS-2, the amount of immobilization was found to be approximately four times higher than that on non-porous silica, and a comparable adsorbability to mesoporous silica was observed. Following γ-aminobutyric acid (GABA) production by the decarboxylation of l-glutamic acid using these immobilized enzymes, the enzymatic activity of the GADβ-KCS-2 composite was found to be significantly higher than that of the free enzyme. In contrast, the activity of the more common GADβ-mesoporous silica composite decreased. Furthermore, the enzymatic activity of the GADβ-KCS-2 composite was superior to those of the un-immobilized free enzyme and the amorphous material itself over a wide temperature range. Thereby, these findings suggest that the amphiphilic nanospace of KCS-2 is suitable as a stable enzyme immobilization field and reaction acceleration field under such conditions. In addition, the durability of the immobilized enzyme was examined in terms of GABA production, with approximately 20% activity retention being observed after 10 cycles using KCS-2. Such durability was not observed for the non-porous silica material due to enzyme desorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2020.10.012DOI Listing

Publication Analysis

Top Keywords

γ-aminobutyric acid
8
glutamate decarboxylase
8
organic-inorganic hybrid
8
hybrid porous
8
porous material
8
non-porous silica
8
gaba production
8
enzymatic activity
8
activity gadβ-kcs-2
8
gadβ-kcs-2 composite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!