Identifying Genomic Alterations in Patients With Stage IV Breast Cancer Using MammaSeq: An International Collaborative Study.

Clin Breast Cancer

Magee-Womens Research Institute, Pittsburgh, PA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA; UPMC Hillman Cancer Center, Pittsburgh, PA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Institute for Precision Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA. Electronic address:

Published: June 2021

Background: Identification of genomic alterations present in cancer patients may aid in cancer diagnosis, prognosis and therapeutic target discovery. In this study, we aimed to identify clinically actionable variants present in stage IV breast cancer (BC) samples.

Materials And Methods: DNA was extracted from formalin-fixed paraffin-embedded samples of BC (n = 41). DNA was sequenced using MammaSeq, a BC-specific next-generation sequencing panel targeting 79 genes and 1369 mutations. Ion Torrent Suite 4.0 was used to make variant calls on the raw data, and the resulting single nucleotide variants were annotated using the CRAVAT toolkit. Single nucleotide variations (SNVs) were filtered to remove common polymorphisms and germline variants. CNVkit was employed to identify copy number variations (CNVs). The Precision Medicine Knowledgebase (PMKB) and OncoKB Precision Oncology Database were used to associate clinical significance with the identified variants.

Results: A total of 41 samples from Turkish patients with BC were sequenced (read depth of 94-13,340; median of 1529). These patients were diagnosed with various BC subtypes including invasive ductal carcinoma, invasive lobular carcinoma, apocrine BC, and micropapillary BC. In total, 59 different alterations (49 SNVs and 10 CNVs) were identified. From these, 8 alterations (3 CNVs - ERBB2, FGFR1, and AR copy number gains and 5 SNVs - IDH1.R132H, TP53.E204∗, PI3KCA.E545K, PI3KCA.H1047R, and PI3KCA.R88Q) were identified to have some clinical significance by PMKB and OncoKB. Moreover, the top 5 genes with the most SNVs included PIK3CA, TP53, MAP3K1, ATM, and NCOR1. Additionally, copy number gains and losses were found in ERBB2, GRB7, IGFR1, AR, FGFR1, MYC, and IKBKB, and BRCA2, RUNX1, and RB1, respectively.

Conclusion: We identified 59 unique alterations in 38 genes in 41 stage IV BC tissue samples using MammaSeq. Eight of these alterations were found to have some clinical significance by OncoKB and PKMB. This study highlights the potential use of cancer specific next-generation sequencing panels in clinic to get better insight into the patient-specific genomic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572555PMC
http://dx.doi.org/10.1016/j.clbc.2020.08.009DOI Listing

Publication Analysis

Top Keywords

genomic alterations
12
copy number
12
clinical significance
12
stage breast
8
breast cancer
8
next-generation sequencing
8
single nucleotide
8
pmkb oncokb
8
number gains
8
alterations
7

Similar Publications

Background: Biliary tract cancers (BTCs) represent distinct biological and genomic entities. Anatomic and geographic heterogeneity in genomic profiling of BTC subtypes, genomic co-alterations, and their impact on long-term outcomes are not well defined.

Methods: Genomic data to characterize alterations among patients with BTCs were derived from the AACR GENIE registry (v15.

View Article and Find Full Text PDF

STAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.

View Article and Find Full Text PDF

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!