Virus-encoded miR-155 ortholog in Marek's disease virus promotes cell proliferation via suppressing apoptosis by targeting tumor suppressor WWOX.

Vet Microbiol

Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China. Electronic address:

Published: January 2021

Marek's disease virus serotype 1 (MDV-1) is an important oncogenic α-herpesvirus that induces immunosuppressive and rapid-onset T-cell lymphomatous disease in poultry commonly referred to as Marek's disease (MD). As an excellent biomodel for the study of virally-induced cancers in natural hosts, MDV-1 encoded microRNAs (miRNAs) have been previously demonstrated with the potential roles to act as critical regulators in virus replication, latency, pathogenesis and especially in oncogenesis. Similar to the oncogenic γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), miR-M4-5p, the cellular microRNA-155 (miR-155) ortholog encoded by MDV-1, is also involved in MD oncogenesis. In lymphoblastoid cell lines derived from MDV-induced T-cell lymphomas, miR-M4-5p has been shown to be highly expressed and participate in inducing MD lymphomagenesis by regulating multiple signal pathways. Herein we report the new identification of the host WW domain-containing oxidoreductase (WWOX) as a biological target for miR-M4-5p. Further experiments revealed that as a critical oncomiRNA, miR-M4-5p promotes the proliferations of both chicken embryo fibroblast (CEF) and MSB-1 cells via suppressing cell apoptosis by targeting WWOX, a well-known tumor suppressor. Our data presents a novel insight in elucidating the regulatory mechanisms mediated by the viral analog of miR-155 that potentially contribute to MD tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108919DOI Listing

Publication Analysis

Top Keywords

marek's disease
12
mir-155 ortholog
8
disease virus
8
apoptosis targeting
8
tumor suppressor
8
virus-encoded mir-155
4
ortholog marek's
4
disease
4
virus promotes
4
promotes cell
4

Similar Publications

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Very virulent plus Marek's disease virus (vv+MDV) induces severe immunosuppression in commercial chickens. In this study, we evaluated how three Gallid alphaherpesvirus 2 (GaHV-2) vaccines (CVI-988, rMd5-BAC∆Meq, and CVI-LTR) protected against two negative outcomes of vv+MDV infection: (1) reduced viability and frequency of immune cells in the spleen and (2) decreased efficacy of the CEO (chicken embryo origin) vaccine against infectious laryngotracheitis challenge. At 25 days post-infection with vv+MDV 686, all vaccines are protected against the reduced viability of splenocytes.

View Article and Find Full Text PDF

Marek's disease virus (MDV), a highly contagious and oncogenic avian alphaherpesvirus, establishes a latent infection primarily in CD4 T cells. Latent infections are necessary for both persistent lifelong MDV infection and viral tumorigenesis. MicroRNAs (miRNAs) play critical roles as post-transcriptional regulators of viral infections.

View Article and Find Full Text PDF

A Systematic Approach to Prioritise Diagnostically Useful Findings for Inclusion in Electronic Health Records as Discrete Data to Improve Clinical Artificial Intelligence Tools and Genomic Research.

Clin Oncol (R Coll Radiol)

December 2024

Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, USA; Department of Pathology, Yale School of Medicine, 20 York Street, Ste East Pavilion 2-631, New Haven, CT 06510, USA. Electronic address:

Aims: The recent widespread use of electronic health records (EHRs) has opened the possibility for innumerable artificial intelligence (AI) tools to aid in genomics, phenomics, and other research, as well as disease prevention, diagnosis, and therapy. Unfortunately, much of the data contained in EHRs are not optimally structured for even the most sophisticated AI approaches. There are very few published efforts investigating methods for recording discrete data in EHRs that would not slow current clinical workflows or ways to prioritise patient characteristics worth recording.

View Article and Find Full Text PDF

Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus.

Front Microbiol

January 2025

Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!