Recent progress in environmentally friendly geopolymers: A review.

Sci Total Environ

Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.

Published: March 2021

The manufacturing of cement demand burning of huge quantities of fuel as well as significant emissions of CO resulting from the decomposition of limestone that consequently resulted in severe environmental impact that is estimated by one ton of CO per ton of cement. Geopolymerization technology is an effective method for converting wastes (containing alumina and silica) into useful products. It can reduce CO emissions significantly from the cement industry. The geopolymerization process usually starts with source materials based on alumina/silicate in addition to alkaline liquids. The compressive strength, setting time, and workability of the final product depends mainly on the type and proportions of the precursors, the type and strength of the activator, the mixing and curing conditions. The structural performance of a geopolymer is similar to that of ordinary Portland cement (OPC). Therefore, geopolymer can replace OPC, and thus decreasing the energy consumption, reducing the cost of the building materials, and minimizing the environmental impacts of the cement industry. This review summaries the mechanism of geopolymerization, including the controlling parameters and different raw materials (fly ash, kaolinite and metakaolin, slag, red mud, silica waste, heavy metals waste, and others) with particular focus on recent studies and challenges in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143166DOI Listing

Publication Analysis

Top Keywords

cement industry
8
cement
5
progress environmentally
4
environmentally friendly
4
friendly geopolymers
4
geopolymers review
4
review manufacturing
4
manufacturing cement
4
cement demand
4
demand burning
4

Similar Publications

Life cycle assessment and industrial synergy for carbon reduction: A circular economy approach.

Sci Total Environ

January 2025

Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.

In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

Materials (Basel)

January 2025

Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.

View Article and Find Full Text PDF

The Influence of Rice Husk Ash Incorporation on the Properties of Cement-Based Materials.

Materials (Basel)

January 2025

Green Environmental Protection Industry Co., Ltd., Guiyang 551109, China.

Rice husk ash is a kind of biomass material. Its main component is silicon dioxide, with a content of up to 80%. It has high pozzolanic activity and can react with hydroxide in cement.

View Article and Find Full Text PDF

Comparative, Cost and Multi-Criteria Analyses of Traditional Binders in the Composition of Hemp-Based Finishing Products.

Materials (Basel)

January 2025

Department of Civil Engineering and Management, Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania.

The objective of this paper is to analyze the characteristics of twelve compositions based on hemp shiv and four traditional binders used in the construction industry: cement, plaster, hydrated lime and clay, with the aim of using the resulting materials as final finishing products applicable to the raw area of walls, slabs and other construction elements for walls. Comparative, cost and multi-criteria analyses were carried out on the proposed compositions. The comparative analysis focused on acoustic, thermal, mechanical and fire characteristics, followed by a cost analysis and ending with multi-criteria analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!