Delivering the benefits of agricultural biotechnology to smallholder farmers requires that resources be directed towards staple food crops. To achieve effect at scale, beneficial traits must be integrated into multiple, elite farmer-preferred varieties with relevance across geographical regions. The staple root crop cassava (Manihot esculenta) is consumed for dietary calories by more than 800 million people, but its tuberous roots provide insufficient iron and zinc to meet nutritional needs. In Africa, cassava yields are furthermore limited by the virus diseases, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). In this study, we strove to develop cassava displaying high-level resistance to CBSD and CMD to attain food and economic security for cassava farmers, along with biofortified levels of iron and zinc to enhance consumer health. RNAi-mediated technology was used to achieve resistance to CBSD in two East African and one Nigerian farmer-preferred cultivars that harboured resistance to CMD. The Nigerian cvs. TMS 95/0505 and TMS 91/02324 were modified with T-DNA imparting resistance to CBSD, along with AtIRT1 (major iron transporter) and AtFER1 (ferritin) transgenes to achieve nutritionally significant levels of iron and zinc in cassava storage roots (145 and 40 µg/g dry weight, respectively). The inherent resistance to CMD was maintained in all four disease resistant and mineral enhanced cassava cultivars described here, demonstrating that this technique could be deployed across multiple farmer-preferred varieties to benefit the food and nutritional security of consumers in Africa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051606PMC
http://dx.doi.org/10.1111/pbi.13511DOI Listing

Publication Analysis

Top Keywords

iron zinc
12
resistance cbsd
12
cassava
9
consumer health
8
farmer-preferred varieties
8
levels iron
8
resistance cmd
8
resistance
6
stacking disease
4
disease resistance
4

Similar Publications

A sensitive and efficient fluorescent sensor based on a magnetic manganese-doped zinc sulfide molecularly imprinted probe (FeO/Mn-ZnS/MIP) was successfully developed for the detection of chlorpyrifos (CPF). The probe combined the advantages of magnetic separation, the fluorescence properties of Mn-ZnS, and the exceptional molecule recognition capabilities of molecularly imprinted polymers. The developed sensor exhibits selective binding to CPF, resulting in a quenching of fluorescence intensity of FeO/Mn-ZnS/MIP by a photo-induced electron transfer mechanism.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Background: Relatively few studies have explored the impact of biofertilizers on the qualitative and quantitative yield of saffron despite its global agricultural and medical importance. This study aimed to evaluate the physiological and phytochemical responses of saffron to potassium (K), phosphorus (P), and iron-zinc (Fe-Zn) biofertilizers over 2 consecutive years (2022-2023). The treatments included single and combined applications of K, P, and Fe-Zn biofertilizers containing active bacterial inoculum, along with a control group, resulting in a total of eight treatments.

View Article and Find Full Text PDF

The study aimed to explore the potential use of coal-fired power plant bottom ashes in Pleurotus ostreatus cultivation using spent coffee grounds. The study analyzed five compositions of growth substrate for mushrooms: pure coffee grounds (I) as a control sample; coffee grounds substrate with the addition of 1% (II); 5% (III); 10% (IV) bottom ash; and bottom ash alone (V). The study revealed that compared to the control sample (I), the addition of 1% bottom ash (II) did not affect the time of mycelium growth but slowed fruiting body growth by 4 days.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!