miR-340-5p inhibits sheep adipocyte differentiation by targeting ATF7.

Anim Sci J

College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China.

Published: November 2020

Several microRNAs (miRNAs) have been identified to play roles in adipocyte differentiation. However, little is known about their involvement in the differentiation of ovine intramuscular adipocytes. Here, the role of one such miRNA, miR-340-5p, in ovine adipocyte differentiation was investigated. Stromal vascular (SV) cells were isolated from skeletal muscle tissues of 1-month-old lambs and induced to differentiate into mature adipocytes. miRNA mimics and inhibitors were used for miR-340-5p overexpression and knockdown assays. For overexpression and knockdown of activating transcription factor 7 (ATF7), lentivirus infection was performed. Luciferase reporter assay was performed to determine the relationship between miR-340-5p and ATF7. The expression of adipogenesis marker genes, PPARγ, C/EBPα, FABP4, ADIPOQ, and ACC, and formation of lipid droplets were detected after the overexpression and inhibition of miR-340-5p, or upon overexpression or knockdown of ATF7. miR-340-5p inhibited the expression of the marker genes and the formation of lipid droplets. ATF7 positively regulated the expression of the marker genes and the formation of lipids. Thus, ATF7 is the target of miR-340-5p in sheep. Overall, these findings indicate that miR-340-5p acts as an inhibitor of the differentiation of intramuscular adipocytes by targeting ATF7. Our study provides a new theoretical basis for improving sheep meat quality.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13462DOI Listing

Publication Analysis

Top Keywords

adipocyte differentiation
12
overexpression knockdown
12
marker genes
12
mir-340-5p
8
targeting atf7
8
intramuscular adipocytes
8
mir-340-5p overexpression
8
formation lipid
8
lipid droplets
8
expression marker
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!