Purpose: The percentage of a maternal cell-free DNA (cfDNA) sample that is fetal-derived (the fetal fraction; FF) is a key driver of the sensitivity and specificity of noninvasive prenatal screening (NIPS). On certain NIPS platforms, >20% of women with high body mass index (and >5% overall) receive a test failure due to low FF (<4%).

Methods: A scalable fetal fraction amplification (FFA) technology was analytically validated on 1264 samples undergoing whole-genome sequencing (WGS)-based NIPS. All samples were tested with and without FFA.

Results: Zero samples had FF < 4% when screened with FFA, whereas 1 in 25 of these same patients had FF < 4% without FFA. The average increase in FF was 3.9-fold for samples with low FF (2.3-fold overall) and 99.8% had higher FF with FFA. For all abnormalities screened on NIPS, z-scores increased 2.2-fold on average in positive samples and remained unchanged in negative samples, powering an increase in NIPS sensitivity and specificity.

Conclusion: FFA transforms low-FF samples into high-FF samples. By combining FFA with WGS-based NIPS, a single round of NIPS can provide nearly all women with confident results about the broad range of potential fetal chromosomal abnormalities across the genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935715PMC
http://dx.doi.org/10.1038/s41436-020-01009-5DOI Listing

Publication Analysis

Top Keywords

fetal fraction
8
noninvasive prenatal
8
prenatal screening
8
high-throughput fetal
4
fraction amplification
4
amplification increases
4
increases analytical
4
analytical performance
4
performance noninvasive
4
screening purpose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!