Porphyran-capped silver nanoparticles as a promising antibacterial agent and electrode modifier for 5-fluorouracil electroanalysis.

Carbohydr Res

Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil. Electronic address:

Published: December 2020

In the present work, the green synthesis of silver nanoparticles (AgNPs) using the sulfated polysaccharide porphyran (PFR) as capping agent and d-glucose as reducing agent is described. PFR was extracted from red seaweed and characterized by employing C NMR and determination of total sugar, protein, and sulfate contents. The obtained AgNPs-PFR were characterized by using UV-VIS spectroscopy, zeta potential determination, FESEM, and TEM, which demonstrated that PFR was effective at capping the AgNPs, yielding stable suspensions. The AgNPs-PFR presented good antimicrobial properties against Gram-positive and Gram-negative bacterial strains (Staphylococcus aureus and Escherichia coli, respectively). The AgNPs-PFR were also employed as the modifier of carbon paste electrodes, which were efficiently applied as electrochemical sensors for the determination of 5-fluorouracil (5-FU), an important anticancer drug, through square wave voltammetry (SWV). The AgNPs-PFR improved the electrochemical properties of the electrodes, and enhanced their electroanalytical performance. The developed sensing device presented detection and quantification limits equal to 10.7 and 35.8 μmol L-1, respectively, towards 5-FU determination. The proposed electrochemical sensor successfully quantified 5-FU in a real pharmaceutical formulation, confirming its potential as a new promising analytical detection tool for 5-FU quality control purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2020.108193DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
porphyran-capped silver
4
nanoparticles promising
4
promising antibacterial
4
antibacterial agent
4
agent electrode
4
electrode modifier
4
modifier 5-fluorouracil
4
5-fluorouracil electroanalysis
4
electroanalysis work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!