Internal rotation and chlorine nuclear quadrupole coupling in 2-chloro-4-fluorotoluene explored by microwave spectroscopy and quantum chemistry.

Spectrochim Acta A Mol Biomol Spectrosc

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France. Electronic address:

Published: February 2021

2-Chloro-4-fluorotoluene was investigated using a combination of molecular jet Fourier transform microwave spectroscopy in the frequency range from 5 to 21 GHz and quantum chemistry. The molecule experiences an internal rotation of the methyl group, which causes fine splittings of all rotational transitions into doublets with separation on the order of a few tens of kHz. In addition, hyperfine effects originating from the chlorine nuclear quadrupole moment coupling its nuclear spin to the end-over-end rotation of the molecule are observed. The torsional barrier was derived using both the rho and the combined-axis-method, giving a value of 462.5(41) cm. Accurate rotational constants and quadrupole coupling constants were determined for the Cl and Cl isotopologues and compared with Bailey's semi-experimental quantum chemical predictions. The gas phase molecular structure was deduced from the experimental rotational constants supplemented with those calculated by quantum chemistry at various levels of theory. The values of the methyl torsional barrier and chlorine nuclear quadrupole coupling constants were compared with the theoretical predictions and with those of other chlorotoluene derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.119120DOI Listing

Publication Analysis

Top Keywords

chlorine nuclear
12
nuclear quadrupole
12
quadrupole coupling
12
quantum chemistry
12
internal rotation
8
microwave spectroscopy
8
torsional barrier
8
rotational constants
8
coupling constants
8
rotation chlorine
4

Similar Publications

Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

Dimeric guaianolide sesquiterpenoids from the flowers of Chrysanthemum indicum ameliorate hepatic steatosis through mitigating SIRT1-mediated lipid accumulation and ferroptosis.

J Adv Res

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao 999078, China. Electronic address:

Introduction: Non-alcoholic fatty liver disease (NAFLD) acts as the primary contributor to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and potentially hepatocellular carcinoma. The flowers of Chrysanthemum indicum, a traditional edible medicinal herb, have been widely used in China for more than 2000 years. However, the function of C.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!