The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells.

Mol Cell Endocrinol

INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France. Electronic address:

Published: January 2021

During obesity, excess body weight is not only associated with an increased risk of type 2-diabetes, but also several other pathological processes, such as infertility. Adipose tissue is the largest endocrine organ of the body that produces adipokines, including adiponectin. Adiponectin has been reported to control fertility through the hypothalamic-pituitary-gonadal axis, and folliculogenesis in the ovaries. In this study, we focused on a recent adiponectin-like synthetic agonist called AdipoRon, and its action in human luteinized granulosa cells. We demonstrated that AdipoRon activated the adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPAR) signalling pathways in human luteinized granulosa cells. A 25 μM AdipoRon stimulation reduced granulosa cell proliferation by inducing cell cycle arrest in G, associated with PTEN and p53 pathway activation. In addition, AdipoRon perturbed cell metabolism by decreasing mitochondrial activity and ATP production. In human luteinized granulosa cells, AdipoRon increased phosphodiesterase activity, leading to a drop in cyclic adenosine monophosphate (cAMP) production, aromatase expression and oestrogens secretion. In conclusion, AdipoRon impacted folliculogenesis by altering human luteinized granulosa cell function, via steroid production and cell proliferation. This agonist may have applications for improving ovarian function in metabolic disorders or granulosa cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2020.111080DOI Listing

Publication Analysis

Top Keywords

human luteinized
20
luteinized granulosa
20
granulosa cells
16
cell proliferation
12
granulosa cell
8
adiporon
7
granulosa
7
cell
6
human
5
luteinized
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!