Cytochrome P450 (P450) 11B1 and 11B2 both catalyze the 11β-hydroxylation of 11-deoxycorticosterone and the subsequent 18-hydroxylation of the product. P450 11B2, but not P450 11B1, catalyzes a further C-18 oxidation to yield aldosterone. 11-Oxygenated androgens are of interest, and 11-hydroxy progesterone has been reported to be a precursor of these. Oxidation of progesterone by purified recombinant P450 11B2 yielded a mono-hydroxy derivative as the major product, and co-chromatography with commercial standards and 2-D NMR spectroscopy indicated 11β-hydroxylation. 18-Hydroxyprogesterone and a dihydroxyprogesterone were also formed. Similarly, oxidation of androstenedione by P450 11B2 yielded 11β-hydroxyandrostenedione, 18-hydroxyandrostenedione, and a dihydroxyandrostenedione. The steady-state kinetic parameters for androstenedione and progesterone 11β-hydroxylation were similar to those reported for the classic substrate 11-deoxycorticosterone. The source of 11α-hydroxyprogesterone in humans remains unresolved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954869PMC
http://dx.doi.org/10.1016/j.jsbmb.2020.105787DOI Listing

Publication Analysis

Top Keywords

p450 11b2
16
cytochrome p450
8
p450 11b1
8
11b2 yielded
8
p450
7
11b2
5
characterization human
4
human adrenal
4
adrenal cytochrome
4
11b2 products
4

Similar Publications

Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO). Several of the steroid transformations are more complex and involve C-C bond scission.

View Article and Find Full Text PDF

Kinetics of Intermediate Release Enhances P450 11B2-Catalyzed Aldosterone Synthesis.

Biochemistry

April 2024

Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC.

View Article and Find Full Text PDF

Cytochrome P450 Enzymes as Drug Targets in Human Disease.

Drug Metab Dispos

May 2024

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee

Although the mention of cytochrome P450 (P450) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential, but in certain disease states, it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1.

View Article and Find Full Text PDF

Modeling and integrating interactions involving the CYP450 enzyme system in a multi-terminology server: Contribution to information extraction from a clinical data warehouse.

Int J Med Inform

February 2023

Department of Digital Health, Rouen University Hospital, Rouen, France; Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé (LIMICS), U1142, INSERM, Sorbonne Université, Paris, France.

Introduction: The cytochrome P450 (CYP450) enzyme system is involved in the metabolism of certain drugs and is responsible for most drug interactions. These interactions result in either an enzymatic inhibition or an enzymatic induction mechanism that has an impact on the therapeutic management of patients. Detecting these drug interactions will allow for better predictability in therapeutic response.

View Article and Find Full Text PDF

Diabetic ketoacidosis (DKA), a frequent complication of type 1 diabetes (T1D), is characterized by hyperosmolar hypovolemia. The response of water-regulating hormones arginine vasopressin (AVP; antidiuretic hormone) and aldosterone to DKA treatment in children is not well understood, although they may have potential as future diagnostic, prognostic, and/or treatment monitoring markers in diabetic patients. We aimed to characterize the dynamics of the response in copeptin (marker for AVP) and aldosterone secretion to rehydration treatment in pediatric patients with DKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!