Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation.

J Hazard Mater

Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China. Electronic address:

Published: April 2021

As an emerging contaminant in water, antibiotic resistant bacteria are threatening the public health gravely. In this study, sulfidated ZVI was used to activate persulfate, for antibiotic resistant E. coli and antibiotic resistant genes removal. Impressively, 7 log of antibiotic resistant E. coli was inactivated within 30 min, in sulfidated ZVI activated persulfate system (S/Fe = 0.05). Electron paramagnetic resonance and free radical quenching experiments suggested that sulfidation treatment did not change the specie of radicals. SOand HO• were the main reactive oxygen species for the removal of antibiotic resistant E. coli and genes. Investigation on the activation mechanism of persulfate indicated that persulfate decomposition was mainly attributed to heterogeneous activation. More importantly, in-situ characterization (ATR-FTIR) indicated that the main charge transfer complex was formed on the surface of sulfidated ZVI, which would predominantly mediate the generation of SO and HO•. Finally, the proposed system was evaluated in modeling water and secondary effluent. Results revealed that only 2.86 log and 0.84 log of antibiotic resistant E. coli were inactivated in the presence of NOM 10 mg/L) and HCO (84 mg/L), respectively. Besides, sulfidated ZVI activated persulfate system could be pH-dependent in actual wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124411DOI Listing

Publication Analysis

Top Keywords

antibiotic resistant
28
resistant coli
20
sulfidated zvi
16
removal antibiotic
8
heterogeneous activation
8
coli inactivated
8
zvi activated
8
activated persulfate
8
persulfate system
8
antibiotic
7

Similar Publications

Chryseobacterium indologenes is a rare human pathogen which is nowadays considered an emerging fearsome organism because of its upcoming antibiotic resistance. We present a quite unique case of a multi drug resistant C. indologenes surgical wound infection in a patient submitted to cannulated screw fixation of a displaced medial malleolus fracture.

View Article and Find Full Text PDF

Correct treatment of chronic osteomyelitis depends on proper identification of the bone-infecting microorganism, but it is difficult identify the specific etiology in previously treated patients and in those with implants. Small colony variants auxotrophyc for menadione had been related with false-negative results in culture of patient with chronic osteomyelitis, but menadione supplementation can increase bone culture performance. The purpose was to evaluate the effect of menadione supplementation on isolates in bone cultures, in a cohort of patients with osteomyelitis, Medellín- Colombia.

View Article and Find Full Text PDF

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!