Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0-120 mg kg). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15-60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22-117%), chlorophyll content (17-63%), antioxidant levels (SOD 10-18%, POD 9-25%, total polyphenols 17-22%, flavonoids 15-29%, and glutathione 7-61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20-27%), superoxide anion (29-36%), and hydrogen peroxide (19-30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115980 | DOI Listing |
Environ Res
December 2024
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China. Electronic address:
Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.
View Article and Find Full Text PDFSci Total Environ
June 2024
State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Molybdenum (Mo) is a critical micronutrient for nitrogen (N) metabolism in legumes, yet the impact of Mo on legume N metabolism in the context of natural coexistence with soil microorganisms remains poorly understood. This study investigated the dose-dependent effect of Mo on soil N biogeochemical cycling, N accumulation, and assimilation in alfalfa under conditions simulating the coexistence of arbuscular mycorrhizal fungi (AMF) and earthworms. The findings indicated that Mo exerted a hormetic effect on alfalfa N accumulation, facilitating it at low concentrations (below 29.
View Article and Find Full Text PDFEnviron Res
April 2024
State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:
Single phytoremediation has limited capacity to restore soil contaminated with extreme Mo due to its low metal accumulation. Soil organisms can help compensate for this deficiency in Mo-contaminated soils. However, there is limited information available on the integrated roles of different types of soil organisms, particularly the collaboration between soil microorganisms and soil animals, in phytoremediation.
View Article and Find Full Text PDFPLoS One
August 2023
School of Life Science, Henan University, Kaifeng, 475004, China.
Numerous studies have shown that the function of earthworms may depend on their ecotype and density, which affects how they impact soil microbial and nematode communities. However, it is unclear how different earthworm species and densities alter the composition of soil microbial and nematode communities and how these modifications impact the soil micro-food web. The structural equation model (SEM) is a more accurate tool for identifying the intricate relationships between various trophic levels in the soil micro-food webs than the widely used bivariate data analysis.
View Article and Find Full Text PDFJ Hazard Mater
August 2022
State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
Phytoremediation is a promising and sustainable technology to remediate the risk of heavy metals (HMs) contaminated soils, however, this way is limited to some factors contributing to slow plant growth and low remediation efficiency. As soil beneficial microbe, arbuscular mycorrhizal fungi (AMF) assisted phytoremediation is an environment-friendly and high-efficiency bioremediation technology. However, AMF-symbiotic formation and their functional expression responsible for HMs-polluted remediation are significantly influenced by edaphic fauna.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!