A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring discharge in a tidal river using water level observations: Application to the Saigon River, Vietnam. | LitMetric

AI Article Synopsis

  • The Saigon River's hydrology is complex, affected by tidal cycles and low net discharge, posing risks for flooding and salt intrusion.
  • A low-cost technique was developed for estimating river discharge every 10 minutes using a specialized rating curve, validated through ADCP campaigns and pressure sensors placed at key locations.
  • The study reveals that rainfall has limited direct impact on water levels and discharge in this estuarine system, but indicates potential interactions between precipitation, groundwater, and the river network, proposing this method as a versatile tool for tidal river assessment.

Article Abstract

The hydrological dynamics of the Saigon River is ruled by a complex combination of factors, which need to be disentangled to prevent and limit risks of flooding and salt intrusion. In particular, the Saigon water discharge is highly influenced by tidal cycles with a relatively low net discharge. This study proposes a low-cost technique to estimate river discharge at high frequency (every 10 min in this study). It is based on a stage-fall-discharge (SFD) rating curve adapted from the general Manning Strickler law, and calibrated thanks to two ADCP campaigns. Two pressure sensors were placed at different locations of the river in September 2016: one at the centre of Ho Chi Minh City and one in Phu Cuong, 40 km upstream approximately. The instantaneous water discharge data were used to evaluate the net residual discharge and to highlight seasonal and inter-annual trends. Both water level and water discharge show a seasonal behaviour. Rainfall, including during the Usagi typhoon that hit the megalopolis in November 2018, has no clear and direct impact on water level and water discharge due to the delta flat morphology and complex response between main channel and side channel network and ground water in this estuarine system under tidal influence. However, we found some evidences of interactions between precipitation, groundwater, the river network and possibly coastal waters. This paper can be seen as a proof of concept to (1) present a low-cost discharge method that can be applied to other tidal rivers, and (2) demonstrate how the high-frequency discharge data obtained with this method can be used to evaluate discharge dynamics in tidal river systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143195DOI Listing

Publication Analysis

Top Keywords

water discharge
16
water level
12
discharge
10
tidal river
8
water
8
saigon river
8
discharge data
8
level water
8
river
7
tidal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!