Ultrasound shear wave elastography measurement of the deep posterior cervical muscles: Reliability and ability to differentiate between muscle contraction states.

J Electromyogr Kinesiol

The University of Sydney, Faculty of Medicine Health Sciences, & the Northern Sydney Local Health District, The Kolling Research Institute, St. Leonards, NSW, Australia; Northwestern University, Feinberg School of Medicine, Physical Therapy and Human Movement Sciences Chicago, IL, USA.

Published: February 2021

The deep posterior cervical muscles (DPCM), specifically the semispinalis cervicis and cervical multifidus, are often impaired in patients with neck disorders and have been assessed by several imaging techniques. Prior ultrasound shear wave elastography (SWE) imaging and reliability assessments of the DPCM were performed utilizing similar positioning as assessments for the more superficial cervical extensors. Our objectives were to describe an SWE imaging technique for the DPCM, establish intra-rater reliability of DPCM SWE, and compare DPCM shear modulus during rest and submaximal contraction in both prone and seated positions in individuals without spinal pain. In sixteen participants, the DPCM was located using B-mode ultrasound, then muscle shear modulus was assessed via SWE at both rest and with contraction against a 2-kg resistance applied at the C2 spinous process. Within-day intra-rater reliability was moderate to good (ICC = 0.70-0.88). The DPCM were stiffer during contraction than at rest in the prone position (p = 0.002), and at rest in sitting versus at rest in prone (p = 0.003). Further research is needed to assess DPCM-specific SWE in symptomatic individuals and compare DPCM shear modulus to electromyography across contraction intensities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2020.102488DOI Listing

Publication Analysis

Top Keywords

shear modulus
12
ultrasound shear
8
shear wave
8
wave elastography
8
deep posterior
8
posterior cervical
8
cervical muscles
8
dpcm
8
swe imaging
8
intra-rater reliability
8

Similar Publications

The relationship between the micro technical indexes and the macro road performance of high modulus asphalt (HMA) is helpful for understanding its mechanism and performance, and promoting its application. To explore the relationship, two kinds of high modulus asphalt (HMA), LLDPE/SBS composite modified asphalt and rubber/PPA composite modified asphalt were prepared according to the HMA requirements. Secondly, Molecular models of two kinds of HMA were established through molecular dynamics (MD) simulations, and the high temperature parameters of LLDPE/SBS composite modified asphalt were obtained with the two methods, namely the micro molecular dynamics simulation and high temperature rheological test, respectively.

View Article and Find Full Text PDF

Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.

View Article and Find Full Text PDF

The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations.

View Article and Find Full Text PDF

Introduction: Up to one in five will suffer from osteoporotic vertebral fracture within their lifetime. Accurate fracture prediction poses challenges using bone mineral density (BMD) measures. Trabecular bone strains may be influenced by the underlying intervertebral disc (IVD).

View Article and Find Full Text PDF

It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!