MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma.

J Control Release

Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada. Electronic address:

Published: February 2021

Diffuse intrinsic pontine glioma (DIPG) is a surgically unresectable and devasting tumour in children. To date, there are no effective chemotherapeutics despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is likely responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive method for treating CNS tumours. Moreover, MRgFUS allows for the temporary and repeated disruption of the BBB. Our group previously reported the feasibility of temporary BBB opening within the normal murine brainstem using MRgFUS following intravenous (IV) administration of microbubbles. In the current study, we set out to test the effectiveness of targeted chemotherapy when paired with MRgFUS in murine models of DIPG. Doxorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested on patient-derived cell lines. We studied the RCAS/Tv-a model where RCAS-Cre, RCAS-PDGFB, and RCAS-H3.3K27M were used to drive tumourigenesis upon injection in the pons. We also used orthotopically injected SU-DIPG-6 and SU-DIPG-17 xenografts which demonstrated a diffusely infiltrative tumour growth pattern similar to human DIPG. In our study, SU-DIPG-17 xenografts were more representative of human DIPG with an intact BBB. Following IV administration of doxorubicin, MRgFUS-treated animals exhibited a 4-fold higher concentration of drug within the SU-DIPG-17 brainstem tumours compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals whose tumours also exhibited decreased Ki-67 expression. Herein, we provide evidence for the ability of MRgFUS to enhance drug delivery in a mouse model of DIPG. These data provide critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may ameliorate DIPG chemotherapeutic approaches in children.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.11.010DOI Listing

Publication Analysis

Top Keywords

mri-guided focused
8
focused ultrasound
8
drug delivery
8
diffuse intrinsic
8
intrinsic pontine
8
pontine glioma
8
clinical trials
8
bbb opening
8
su-dipg-17 xenografts
8
tumour growth
8

Similar Publications

This paper describes the design and initial proof-of-concept of a single pre-clinical transcranial focused ultrasound (FUS) system capable of performing histotripsy (mechanical ablation), hyperthermia, blood-brain barrier opening (BBBO), sonodynamic therapy, or neuromodulation in a murine brain. We have termed it the All-in-One FUS system for murine brain studies, which is the first FUS system of its kind. The 1.

View Article and Find Full Text PDF

Objective: Since the recent development of stereotactic ablation surgery, which can provide good seizure outcomes without limitations in size or location, conventional classification systems have become unsuitable for surgical guidance. The present study aimed to evaluate the validity of a newly proposed classification system focusing on the attachment pattern.

Methods: This retrospective study investigated 218 patients with hypothalamic hamartomas who underwent MRI-guided stereotactic radiofrequency thermocoagulation and were followed for at least 1 year after their last surgery.

View Article and Find Full Text PDF

This study involved a 73-year-old man who underwent thalamotomy via magnetic resonance imaging (MRI)-guided, focused ultrasound surgery, in which the left thalamic ventral intermediate nucleus is targeted, as a treatment for action tremor of the right-hand fingers caused by essential tremor. Following treatment, the action tremor of the right-hand fingers mostly disappeared, but new symptoms of paresis and sensory impairment were evident in the left upper and lower limbs. Head MRI exhibited a hyperintense lesion on diffusion-weighted imaging and a decreased apparent diffusion coefficient in a region of the right thalamus following the anterior choroidal artery, medial posterior choroidal artery, and thalamogeniculate artery territory.

View Article and Find Full Text PDF

The latest advancement in high-intensity focused ultrasound (HIFU) treatment technology integrates magnetic resonance imaging (MRI) guidance for precise treatment of prostate disease. As conventional electromagnetic motors are not applicable for utilization within MRI scanners, we have developed a prototype robotic system driven by pneumatic stepper motors to control the movement of the HIFU transducer within an intrarectal probe during MRI-guided HIFU treatment procedures. These pneumatic stepper motors were constructed entirely from MRI-compatible plastic materials.

View Article and Find Full Text PDF

Introduction: MRI-guided focused ultrasound (MRgFUS) thalamotomy of the nucleus ventralis intermedius (VIM) has emerged as a powerful and safe treatment modality for refractory essential tremor. While the efficacy of this technique has been extensively described, much remains unclear about how to optimize MRgFUS for patient quality of life (QoL), which may depend as much on a patient's adverse effect profile as on the magnitude of tremor suppression. Diffusion tensor imaging (DTI) has been used to help guide targeting strategies but can pose certain challenges for scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!