Purpose: In order to improve the therapeutic efficiency of the chemotherapeutic drug paclitaxel in tumors, a folate-based Paclitaxel nanoemulsion (FNEs) was developed for tumor targeted treatment.

Methods: In this study, we designed a folate-targeted nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) based on the traditional nanoemulsion using the principle of long-circulation targeting receptor mediated. The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) was fabricated using high-pressure homogenization with a microfluidizer.

Results: The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) can improve the delivery efficiency of nanocarriers at the tumor site by virtue of the high expression of folate receptors on the tumor surface. Malvern Nanoseries device and transmission electron microscopy (TEM) analyses showed that the nanoemulsions were spherical with an average diameter of 140 nm. The nanoemulsions can effectively carry paclitaxel (PTX) with an encapsulation rate of about 95%. And in vitro experiments have shown that it can efficiently increase the uptake of PTX in 4 T1 breast cancer cells and FNEs had a targeting capability hundredfold higher than that of PTX-loaded nanoemulsions (PTX-NEs) without folate. In vivo experiments have shown that the pharmacokinetic parameters of FNEs were better than those of other PTX groups and FNEs can significantly enhance circulation time in the body of the subcutaneously implanted 4 T1 breast cancer in mice, increase the accumulation of chemotherapy drugs at tumor sites and effectively inhibit tumor growth with lower system toxicity.

Conclusions: This study can effectively improve the therapeutic efficiency of chemotherapy drugs for tumors, and provide an useful reference for solving the problem of low efficacy of chemotherapy drugs in clinical treatment of tumors. Graphical Abstract Schematic representation of Folic acid/PEG-DSPE/nano-emulsion (FNEs) specifically target tumor cells and enhanced anti-tumor effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-020-02811-1DOI Listing

Publication Analysis

Top Keywords

chemotherapy drugs
16
nanoemulsion folate/peg-dspe/nanoemulsion
12
folate/peg-dspe/nanoemulsion fnes
12
efficiency chemotherapy
8
improve therapeutic
8
therapeutic efficiency
8
fnes
8
4 t1 breast
8
breast cancer
8
tumor
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!