2D PtTe2 layers, a relatively new class of 2D crystals, have unique band structure and remarkably high electrical conductivity promising for emergent opto-electronics. This intrinsic superiority can be further leveraged toward practical device applications by merging them with mature 3D semiconductors, which has remained largely unexplored. Herein, we explored 2D/3D heterojunction devices by directly growing large-area (>cm2) 2D PtTe2 layers on Si wafers using a low-temperature CVD method and unveiled their superior opto-electrical characteristics. The devices exhibited excellent Schottky transport characteristics essential for high-performance photovoltaics and photodetection, i.e., well-balanced combination of high photodetectivity (>1013 Jones), small photo-responsiveness time (∼1 μs), high current rectification ratio (>105), and water super-hydrophobicity driven photovoltaic improvement (>300%). These performances were identified to be superior to those of previously explored 2D/3D or 2D layer-based devices with much smaller junction areas, and their underlying principles were confirmed by DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr05670gDOI Listing

Publication Analysis

Top Keywords

ptte2 layers
8
explored 2d/3d
8
large-area ptte/silicon
4
ptte/silicon vertical-junction
4
devices
4
vertical-junction devices
4
devices ultrafast
4
ultrafast high-sensitivity
4
high-sensitivity photodetection
4
photodetection photovoltaic
4

Similar Publications

Highly Efficient Electrode of Dirac Semimetal PtTe for MoS-Based Field Effect Transistors.

ACS Appl Mater Interfaces

December 2024

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Two-dimensional van der Waals (vdW) layered materials not only are an intriguing fundamental scientific research platform but also provide various applications to multifunctional quantum devices in the field-effect transistors (FET) thanks to their excellent physical properties. However, a metal-semiconductor (MS) interface with a large Schottky barrier causes serious problems for unleashing their intrinsic potentials toward the advancements in high-performance devices. Here, we show that exfoliated vdW Dirac semimetallic PtTe can be an excellent electrode for electrons in MoS FETs.

View Article and Find Full Text PDF

Two-Dimensional Topological Platinum Telluride Superstructures with Periodic Tellurium Vacancies for Efficient and Robust Catalysis.

ACS Nano

November 2024

School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.

Defect engineering in the inherently inert basal planes of transition metal dichalcogenides (TMDs), involving the introduction of chalcogen vacancies, represents a pivotal approach to enhance catalytic activity by exposing high-density catalytic metal single-atom sites. However, achieving a single-atom limit spacing between chalcogen vacancies to form ordered superstructures remains challenging for creating uniformly distributed high-density metal single-atom sites on TMDs comparable to carbon-supported single-atom catalysts (SACs). Here we unveil an efficient TMD-based topological catalyst for hydrogen evolution reaction (HER), featuring high-density single-atom reactive centers on a few-layer (7 × 7)-PtTe superstructure.

View Article and Find Full Text PDF

Utilizing simulations, we study the spin-dependent electronic transport characteristics within FeGeTe-based van der Waals heterostructures. The electronic density of states for both free-standing and device-configured FeGeTe (F4GT) confirms its ferromagnetic metallic nature and reveals a weak interface interaction between F4GT and PtTe electrodes, enabling efficient spin filtering. The ballistic transport through a double-layer F4GT with a ferromagnetic configuration sandwiched between two PtTe electrodes is predicted to exhibit an impressive spin polarization of 97% with spin-up electrons exhibiting higher transmission probability than spin-down electrons.

View Article and Find Full Text PDF

The hydrogen evolution reaction (HER) in alkaline electrolytes using transition metal dichalcogenides is a research area that is not tapped into. Alkaline HER ( ) is harder to achieve relative to acidic HER ( ), this is attributed to the additional water dissociation step that occurs in basic HER to generate H ions. In fact, for most catalysts, their HER activity decreases tremendously when the electrolyte is changed from acidic to basic conditions.

View Article and Find Full Text PDF

Electronic devices employing two-dimensional (2D) van der Waals (vdW) transition-metal dichalcogenide (TMD) layers as semiconducting channels often exhibit limited performance (e.g., low carrier mobility), in part, due to their high contact resistances caused by interfacing non-vdW three-dimensional (3D) metal electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!