Animal populations are influenced strongly by fluctuations in weather conditions, but long-term fitness costs are rarely explored, especially in short-lived avian species. We evaluated the relative contributions of individual characteristics and environmental conditions to lifetime reproductive success (LRS) of female tree swallows (Tachycineta bicolor) from two populations breeding in contrasting environments and geographies, Saskatchewan and British Columbia, Canada. Female swallows achieved higher LRS by breeding early in the season and producing more fledglings. Other measures of female quality had virtually no influence on LRS. Genetic factors did not predict LRS, as there was no correlation between life-history components for sister pairs nor between mothers and their daughters. Instead, climate variability-indexed by spring pond density (i.e., abundance of wetland basins holding water) during years when females bred-had strong positive effects on female LRS in more arid Saskatchewan but only weak positive effects of moisture conditions were detected in wetter British Columbia. Overall, several life history trait correlates of LRS were similar between populations, but local environmental factors experienced by individuals while breeding produced large differences in LRS. Consequently, variable and extreme environmental conditions associated with changing climate are predicted to influence individual fitness of distinct populations within a species' range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666198 | PMC |
http://dx.doi.org/10.1038/s41598-020-75557-w | DOI Listing |
Environ Manage
January 2025
TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.
The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFSci Rep
January 2025
Asian Development Bank Institute, Research, Tokyo, 100-6008, Japan.
Global food production predominantly depends on a limited number of cereal crops; however, numerous other crops have the potential to support the nutrition and economy of many local communities in developing countries. The different crop species characterized as having relatively low perceived economic importance or agricultural significance are known as underutilized crops. Millet is one of the underutilized crops with significant potential to address nutrient and hunger-related challenges in many developing countries like Nepal due to its versatility and climate resilience.
View Article and Find Full Text PDFSci Data
January 2025
Department of Earth and Environmental Engineering, Columbia University, New York, USA.
The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!