The influence of waste glass and red mud addition as alternative source of aluminosilicate precursors on the microstructural, mechanical, and leaching properties of bottom ash-based geopolymer was studied in this work through mineralogical, morphological, and spectroscopic analysis, as well as by conducting compressive strength and leaching tests. The bottom ash-based geopolymer composites were synthesized by adding a constant amount of waste glass (10% by weight) and increasing amounts of red mud (up to 30% by weight). The results derived from FTIR, Si and Al MAS NMR, and SEM-EDX revealed that adding up to 10% (by weight) red mud to the synthesis mixes leads to an increase in the degree of geopolymerization of the activated mixes. The compressive strength followed the same trend. An increase of more than 10% (by weight) red mud added to the synthesis mixes results in a significant decrease of compressive strength of the geopolymer composites. A low leachability of geopolymer composites in regard with their contaminants was revealed especially for those with good compressive strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666113 | PMC |
http://dx.doi.org/10.1038/s41598-020-76818-4 | DOI Listing |
Sci Total Environ
January 2025
CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, Madhya Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:
Conversion of caustic red mud (RM, Alumina industry waste) into building materials becoming one of the viable solution for its large scale utilization. The building materials developed using RM often results in efflorescence due to its high alkalinity, which is detrimental for the structural integrity of the buildings. The X-ray shielding tiles developed through ceramic route using the mixtures of RM, BaSO and kaolin clay also suffers from severe NaSO efflorescence when sintered above 1000 °C.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada.
This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Slovenian National Building and Civil Engineering Institute, 1000 Ljubljana, Slovenia.
The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei Yingsheng New Material Technology Co., Ltd., Shijiazhuang, China.
Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!