is the most common cause of seafood-borne illness reported in the United States. The draft genomes of 132 North American clinical and oyster isolates were sequenced to investigate their phylogenetic and biogeographic relationships. The majority of oyster isolate sequence types (STs) were from a single harvest location; however, four were identified from multiple locations. There was population structure along the Gulf and Atlantic Coasts of North America, with what seemed to be a hub of genetic variability along the Gulf Coast, with some of the same STs occurring along the Atlantic Coast and one shared between the coastal waters of the Gulf and those of Washington State. Phylogenetic analyses found nine well-supported clades. Two clades were composed of isolates from both clinical and oyster sources. Four were composed of isolates entirely from clinical sources, and three were entirely from oyster sources. Each single-source clade consisted of one ST. Some human isolates lack , , and some type III secretion system (T3SS) genes, which are established virulence genes of Thus, these genes are not essential for pathogenicity. However, isolates in the monophyletic groups from clinical sources were enriched in several categories of genes compared to those from monophyletic groups of oyster isolates. These functional categories include cell signaling, transport, and metabolism. The identification of genes in these functional categories provides a basis for future in-depth pathogenicity investigations of is the most common cause of seafood-borne illness reported in the United States and is frequently associated with shellfish consumption. This study contributes to our knowledge of the biogeography and functional genomics of this species around North America. STs shared between the Gulf Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport via oceanic currents or large shipping vessels. STs frequently isolated from humans but rarely, if ever, isolated from the environment are likely more competitive in the human gut than other STs. This could be due to additional functional capabilities in areas such as cell signaling, transport, and metabolism, which may give these isolates an advantage in novel nutrient-replete environments such as the human gut.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848924PMC
http://dx.doi.org/10.1128/AEM.01403-20DOI Listing

Publication Analysis

Top Keywords

north america
12
phylogenetic biogeographic
8
common seafood-borne
8
seafood-borne illness
8
illness reported
8
reported united
8
united states
8
clinical oyster
8
oyster isolates
8
gulf coast
8

Similar Publications

After decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.

View Article and Find Full Text PDF

An accurate estimate of length of stay is necessary to derive passage population size for birds using a migration stopover site. In this study, we used VHF tags and a Motus automated telemetry array to estimate the length of stay of 385 Western Sandpipers () migrating through two stopover sites in British Columbia, Canada (Tofino and Fraser River Estuary) over the course of seven migration periods (three northward and four southward) from 2018 to 2021. The average length of stay of Western Sandpipers at the Tofino site on the west coast of Vancouver Island varied from 2 to 6 days and was shorter than the length of stay at the Fraser River Estuary, where the average length of stay varied from 4 to 8 days.

View Article and Find Full Text PDF

In North America, raccoon rabies virus (RRV) is a public health concern due to its potential for rapid spread, maintenance in wildlife, and impact on human and domesticated animal health. RRV is an endemic zoonotic pathogen throughout the eastern USA. In 1991, an outbreak of RRV in Fairfield County, Connecticut, spread through the state and eventually throughout the Northeast and into Canada.

View Article and Find Full Text PDF

Groundbreaking strategies for preventive cardiology were showcased at the 2024 American Society for Preventive Cardiology (ASPC) Congress on Cardiovascular Disease (CVD) Prevention held in Salt Lake City, Utah, from August 2nd to 4th, 2024. The event featured 69 moderators and 13 scientific sessions comprised of 98 topics, 36 satellite events, 133 poster presentations, and 27 lifestyle classes. The conference highlighted innovative strategies focused on integrating cardiovascular, kidney, and metabolic health, presenting a cohesive approach for managing complex, interrelated conditions.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!