Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949050PMC
http://dx.doi.org/10.1074/jbc.RA120.016265DOI Listing

Publication Analysis

Top Keywords

active site
12
substrate
10
crystal structures
8
site
5
hggt1
5
structures glutathione-
4
glutathione- inhibitor-bound
4
inhibitor-bound human ggt1
4
human ggt1 critical
4
critical interactions
4

Similar Publications

Background: Blinding is essential for mitigating biases in trials of low back pain (LBP). Our main objectives were to assess the feasibility of blinding: (1) participants randomly allocated to active or placebo spinal manual therapy (SMT), and (2) outcome assessors. We also explored blinding by levels of SMT lifetime experience and recent LBP, and factors contributing to beliefs about the assigned intervention.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Protein abundance of drug transporters and drug-metabolizing enzymes in paired healthy and tumor tissue from colorectal cancer patients.

Int J Pharm

January 2025

Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:

The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.

View Article and Find Full Text PDF

The structural biology of deoxyhypusination complexes.

Structure

January 2025

Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland. Electronic address:

Deoxyhypusination is the first rate-limiting step of the unique post-translational modification-hypusination-that is catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). This modification is essential for the activation of translation factor 5A in eukaryotes (eIF5A) and Archaea (aIF5A). This perspective focuses on the structural biology of deoxyhypusination complexes in eukaryotic and archaeal organisms.

View Article and Find Full Text PDF

Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!