A biogeochemical approach to evaluate the optimization and effectiveness of hypolimnetic withdrawal.

Sci Total Environ

Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Finland. Electronic address:

Published: February 2021

Hypolimnetic withdrawal (HW) is a lake restoration method that is based on the removal of phosphorus (P) along with near-bottom water. While it has often proven to be effective, the method also sets challenges: it is about balancing between effective P removal and maintenance of the thermal stratification of the lake. The success of different HW projects has been reviewed in some studies retrospectively, but scientific literature still lacks studies that use detailed data on the lake biogeochemistry to scale and optimize the method in advance, and to predict the outcomes of the restoration measure. In the current study, we investigated the seasonal biogeochemistry, P stocks and thermal stratification of a eutrophic lake (Lake Kymijärvi/Myllypohja basin, southern Finland) to determine an optimal withdrawal rate, to assess its effects on stratification, and to evaluate the expected success of HW. We found that by adjusting HW with P diffusive fluxes from the sediment (diffusion-adjusted HW), it is possible to remove a notable part of the cycling P without causing major disturbances to the thermal stratification even in a relatively shallow lake. Our results show that HW can have great potential in lake restoration: diffusion-adjusted HW in our study lake could increase the annual P output by 35-46%, shifting the P budget of the lake to negative. We thus propose a novel approach to optimize HW on the basis of the diffusive flux of P from the sediment, with the goal of extracting P continuously at an equivalent rate to the diffusive flux. We finally discuss how this can be achieved more effectively with HW based on a closed-circuit system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143202DOI Listing

Publication Analysis

Top Keywords

thermal stratification
12
lake
9
hypolimnetic withdrawal
8
lake restoration
8
diffusive flux
8
biogeochemical approach
4
approach evaluate
4
evaluate optimization
4
optimization effectiveness
4
effectiveness hypolimnetic
4

Similar Publications

Increasing temperature counteracts the negative effects of ultraviolet radiation on Microcystis aeruginosa under future climate scenarios in relation to physiological processes.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, CABA, Argentina; Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, General San Martín, Argentina; Red de Investigación de estresores Marinos-Costeros en América Latina y el Caribe, Mar del Plata, Argentina. Electronic address:

Heat waves, are a major concern related to climate change, and are projected to increase in frequency and severity. This temperature rise causes thermal stratification, exposing surface-dwelling organisms to higher levels of ultraviolet radiation (UVR). This study aims to understand how the toxic bloom-forming cyanobacterium Microcystis aeruginosa adapts to changing climatic conditions.

View Article and Find Full Text PDF

Background: Impaired oxidation of branched chain amino acids may give rise to volatile organic compounds (VOCs). We hypothesized that VOCs will be present in exhaled breath of participants with propionic acidemia (PA), and their relative abundance would correlate with clinical and biochemical characteristics of the disease.

Methods: We enrolled 5 affected participants from a natural history study of PA (ClinicalTrials.

View Article and Find Full Text PDF

The influence of thermal and hypoxia induced habitat compression on walleye (Sander vitreus) movements in a temperate lake.

Mov Ecol

January 2025

Great Lakes Laboratory for Fisheries and Aquatic Science, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON, Canada.

Background: Globally, temperate lakes are experiencing increases in surface water temperatures, extended periods of summer stratification, and decreases of both surface and deep water dissolved oxygen (DO). The distribution of fish is influenced by a variety of factors, but water temperature and dissolved oxygen are known to be particularly constraining such that with climate change, fish will likely feel the "squeeze" from above and below.

Methods: This study used acoustic telemetry to explore the effects of both thermal stratification and the deoxygenation of the hypolimnion on walleye (Sander vitreus) movements in a coastal embayment in Lake Ontario.

View Article and Find Full Text PDF

Selective withdrawal is an effective measure to mitigate the adverse effects caused by reservoir construction. The main types of selective withdrawal include multi-level withdrawal and internal weir withdrawal, each with distinct characteristics. It is urgent to elucidate the thermal response differences between these two types of selective withdrawal to improve scheduling accuracy.

View Article and Find Full Text PDF

Background: The status of central lymph node (CLN) is a crucial determinant for the initial treatment of papillary thyroid cancer (PTC), but preoperative ultrasound (US) has limited ability to accurately assess their condition. This study aimed to develop a risk score model for risk stratification of CLN metastasis in unifocal PTC patients to guide the initial treatment.

Methods: A total of 5,374 patients diagnosed with unifocal PTC at Union Hospital between November 2009 and August 2022 were finally enrolled in the analysis, including 3,542 patients in derivation cohort and 1,832 patients in validation cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!