Dynamical kernels for optical excitations.

J Chem Phys

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

Published: November 2020

We discuss the physical properties and accuracy of three distinct dynamical (i.e., frequency-dependent) kernels for the computation of optical excitations within linear response theory: (i) an a priori built kernel inspired by the dressed time-dependent density-functional theory kernel proposed by Maitra et al. [J. Chem. Phys. 120, 5932 (2004)], (ii) the dynamical kernel stemming from the Bethe-Salpeter equation (BSE) formalism derived originally by Strinati [Riv. Nuovo Cimento 11, 1-86 (1988)], and (iii) the second-order BSE kernel derived by Zhang et al. [J. Chem. Phys. 139, 154109 (2013)]. The principal take-home message of the present paper is that dynamical kernels can provide, thanks to their frequency-dependent nature, additional excitations that can be associated with higher-order excitations (such as the infamous double excitations), an unappreciated feature of dynamical quantities. We also analyze, for each kernel, the appearance of spurious excitations originating from the approximate nature of the kernels, as first evidenced by Romaniello et al. [J. Chem. Phys. 130, 044108 (2009)]. Using a simple two-level model, prototypical examples of valence, charge-transfer, and Rydberg excited states are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0028040DOI Listing

Publication Analysis

Top Keywords

chem phys
12
dynamical kernels
8
optical excitations
8
excitations
6
dynamical
5
kernel
5
kernels optical
4
excitations discuss
4
discuss physical
4
physical properties
4

Similar Publications

Transformation of Distinct Superatoms to Superalkalis by Successive Ligation of Thymine Nucleobases.

J Phys Chem A

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China.

The ligation strategy has been widely used in the chemical synthesis of atomically precise clusters. A series of thymine (T)-ligated Al-T ( = Be, Al, C; = 1-5) complexes have been studied to reveal the effect of DNA nucleobase ligands on the electronic structures of different superatoms in the present work. In addition to its protective role, the successive attachment of thymine ligands significantly lowers the adiabatic ionization energies (AIEs) of the studied Al superatoms with filled and unfilled electronic shells.

View Article and Find Full Text PDF

Electronically Nonadiabatic Quenching of Excited States of O by Collisions with O Atoms.

J Phys Chem A

January 2025

Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.

The kinetics of electronically inelastic quenching of O(Δ) and O(Σ) by collisions with O(P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy A' states of O. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature.

View Article and Find Full Text PDF

Self-Assembled Oligomers Facilitate Amino Acid-Driven CO Capture at the Air-Aqueous Interface.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.

View Article and Find Full Text PDF

The Quantum Information Science Challenge for Chemistry.

J Phys Chem Lett

January 2025

Department of Chemistry, College of Science, University of Nevada, Reno, Nevada 89557, United States.

We discuss the goals and the need for quantum information science (QIS) in chemistry. It is important to identify concretely how QIS matters to chemistry, and we articulate some of the most pressing and interesting research questions at the interface between chemistry and QIS, that is, "chemistry-centric" research questions relevant to QIS. We propose in what ways and in what new directions the field should innovate, in particular where a chemical perspective is essential.

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!