The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon-phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735965PMC
http://dx.doi.org/10.1093/femsle/fnaa185DOI Listing

Publication Analysis

Top Keywords

transposon libraries
8
outward-oriented promoters
8
mechanisms action
8
action resistance
8
transposon mutant
8
mutant libraries
8
high-density transposon
4
libraries
4
libraries utilising
4
utilising outward-oriented
4

Similar Publications

A surface protein identified from Streptococcus suis serotype 2 exhibits neutrophil-resistant ability via its polysaccharide capsule.

Microb Pathog

December 2024

MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, PR China. Electronic address:

Article Synopsis
  • Streptococcus suis serotype 2 (SS2) is a zoonotic bacteria that can cause serious diseases, but how it avoids the body's immune system is not well understood.
  • A study identified a specific protein mutation in SS2 that leads to increased neutrophil responses, yet the mutated bacteria survive poorly in the bloodstream compared to the original strain.
  • The deletion of this protein results in a weaker protective capsule and boosts the bacteria's ability to form biofilms; however, it also decreases the bacteria's survival within immune cells, highlighting potential targets for preventing infections.
View Article and Find Full Text PDF

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components-plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in .

View Article and Find Full Text PDF

Transposon mutagenesis identifies the sspA-sspB operon as essential for serum resistance and virulence in avian pathogenic Escherichia coli.

Vet Microbiol

December 2024

Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China. Electronic address:

Avian pathogenic Escherichia coli (APEC) constitutes a significant threat to poultry health worldwide, causing colibacillosis and inflicting substantial economic losses. The ability to resist serum-mediated killing is a key virulence factor enabling APEC to circumvent the host immune system and establish systemic infection. In this study, we employed mariner-based transposon mutagenesis to generate a mutant library of APEC strain E058 and screened for mutants with reduced serum resistance.

View Article and Find Full Text PDF

Unlabelled: Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify genes that promote pathogen fitness in stationary phase. We discovered that the aintenance of ipid symmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!