Fiber dispersion and square-law detection-induced power fading is a fundamental obstacle in intensity modulation with direct detection links. In this Letter, we propose a hardware-efficient vestigial sideband (VSB) transmitter to suppress such an impairment. By introducing an appropriate time skew between the differential arms of the Mach-Zehnder modulator, a VSB signal can be generated based on a single digital-to-analog convertor without optical filtering. At the receiver, a Volterra equalizer is utilized to mitigate the inter-symbol interference. In the proof-of-concept experiment, 32 Gbaud 4/6/8-ary pulse amplitude modulation signals can be successfully transmitted over an 80 km standard single-mode fiber with bit-error rates below the KP4, 7% hard-decision and 20% soft-decision forward error correction thresholds, respectively. The proposed scheme provides a promising and low-cost solution for high-speed metro and data center interconnect applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.406146DOI Listing

Publication Analysis

Top Keywords

time skew
8
vestigial sideband
8
skew enabled
4
enabled vestigial
4
sideband modulation
4
modulation dispersion-tolerant
4
dispersion-tolerant direct-detection
4
direct-detection transmission
4
transmission fiber
4
fiber dispersion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!