Empirical evidence has shown that there is an ideal arrangement of facial features (ideal ratios) that can optimize the attractiveness of a person's face. These putative ratios define facial attractiveness in terms of spatial relations and provide important rules for measuring the attractiveness of a face. In this paper, we show that a deep neural network (DNN) model can learn putative ratios from face images based only on categorical annotation when no annotated facial features for attractiveness are explicitly given. To this end, we conducted three experiments. In Experiment 1, we trained a DNN model to recognize the attractiveness (female/male × high/low attractiveness) of face in the images using four category-specific neurons (CSNs). In Experiment 2, face-like images were generated by reversing the DNN model (e.g., deconvolution). These images depict the intuitive attributes encoded in CSNs of the four categories of facial attractiveness and reveal certain consistencies with reported evidence on the putative ratios. In Experiment 3, simulated psychophysical experiments on face images with varying putative ratios reveal changes in the activity of the CSNs that are remarkably similar to those of human judgements reported in a previous study. These results show that the trained DNN model can learn putative ratios as key features for the representation of facial attractiveness. This finding advances our understanding of facial attractiveness via DNN-based perspective approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2020.10.001 | DOI Listing |
Pain Rep
February 2025
Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Introduction: Pain phenomenology in patients with fibromyalgia syndrome (FMS) shows considerable overlap with neuropathic pain. Altered neural processing leading to symptoms of neuropathic pain can occur at the level of the spinal cord, and 1 potential mechanism is spinal disinhibition. A biomarker of spinal disinhibition is impaired H-reflex rate-dependent depression (HRDD).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India.
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects.
View Article and Find Full Text PDFMar Drugs
December 2024
School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .
View Article and Find Full Text PDFBiol Direct
December 2024
Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation.
View Article and Find Full Text PDFLife Sci
December 2024
Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China. Electronic address:
Polycystic ovary syndrome (PCOS) has been noticed as a neuroendocrine syndrome manifested by reproductive hormone dysregulation involving increased luteinizing hormone (LH) pulse frequency and an increased LH to follicle-stimulating hormone ratio, yet theory is just beginning to be established. Neuroglia located in the arcuate nucleus and median eminence (ARC-ME) that are close to gonadotropin-releasing hormone (GnRH) axon terminals, comprise the blood-brain barrier and fenestrated vessels implying their putative roles in the modulation of the abnormal GnRH pulse in PCOS. This review outlines the disturbances of neuron-glia networks that underlie hypothetically the deregulation of GnRH-LH release and impaired sex hormone negative feedback in PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!