Speech frequency-following response in human auditory cortex is more than a simple tracking.

Neuroimage

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:

Published: February 2021

The human auditory cortex is recently found to contribute to the frequency following response (FFR) and the cortical component has been shown to be more relevant to speech perception. However, it is not clear how cortical FFR may contribute to the processing of speech fundamental frequency (F0) and the dynamic pitch. Using intracranial EEG recordings, we observed a significant FFR at the fundamental frequency (F0) for both speech and speech-like harmonic complex stimuli in the human auditory cortex, even in the missing fundamental condition. Both the spectral amplitude and phase coherence of the cortical FFR showed a significant harmonic preference, and attenuated from the primary auditory cortex to the surrounding associative auditory cortex. The phase coherence of the speech FFR was found significantly higher than that of the harmonic complex stimuli, especially in the left hemisphere, showing a high timing fidelity of the cortical FFR in tracking dynamic F0 in speech. Spectrally, the frequency band of the cortical FFR was largely overlapped with the range of the human vocal pitch. Taken together, our study parsed the intrinsic properties of the cortical FFR and reveals a preference for speech-like sounds, supporting its potential role in processing speech intonation and lexical tones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117545DOI Listing

Publication Analysis

Top Keywords

auditory cortex
20
cortical ffr
20
human auditory
12
ffr
8
processing speech
8
fundamental frequency
8
harmonic complex
8
complex stimuli
8
phase coherence
8
speech
7

Similar Publications

Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training.

Hear Res

October 2024

School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China. Electronic address:

Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms.

View Article and Find Full Text PDF

Parenting: How caregiving experience refines sensory integration.

Curr Biol

January 2025

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:

Pup odors and vocalizations integrate in the auditory cortex. A new study reveals that odor information is relayed to the auditory cortex by the basal amygdala and the activity of this projection enhances sound responses in females with pup experience.

View Article and Find Full Text PDF

Recent work has claimed that most apparently cross-modal responses in sensory cortex are instead caused by the face movements evoked by stimuli of the non-dominant modality. We show that visual stimuli rarely trigger face movements in awake mice; when they occur, such movements do not explain visual responses in auditory cortex; and in simultaneous recordings, face movements drove artifactual cross-modal responses in visual but not auditory cortex. Thus face movements do not broadly explain cross-modal activity across all stimulus modalities.

View Article and Find Full Text PDF

In sensory and mid-level regions of the brain, stimulus information is often topographically organized; functional responses are arranged in maps according to features such as retinal coordinates, auditory pitch, and object animacy or size. However, such organization is typically measured during stimulus input, e.g.

View Article and Find Full Text PDF

Background: Converging evidence from clinical neuroimaging and animal models has strongly implicated dysfunction of thalamocortical circuits in the pathophysiology of schizophrenia. Preclinical models of genetic risk for schizophrenia have shown reduced synaptic transmission from auditory thalamus to primary auditory cortex, which may represent a correlate of auditory disturbances such as hallucinations. Human neuroimaging studies, however, have found a generalized increase in resting state functional connectivity (RSFC) between whole thalamus and sensorimotor cortex in people with schizophrenia (PSZ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!