Structure, metabolism and biological functions of steryl glycosides in mammals.

Biochem J

Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.

Published: November 2020

Steryl glycosides (SGs) are sterols glycosylated at their 3β-hydroxy group. They are widely distributed in plants, algae, and fungi, but are relatively rare in bacteria and animals. Glycosylation of sterols, resulting in important components of the cell membrane SGs, alters their biophysical properties and confers resistance against stress by freezing or heat shock to cells. Besides, many biological functions in animals have been suggested from the observations of SG administration. Recently, cholesteryl glucosides synthesized via the transglycosidation by glucocerebrosidases (GBAs) were found in the central nervous system of animals. Identification of patients with congenital mutations in GBA genes or availability of respective animal models will enable investigation of the function of such endogenously synthesized cholesteryl glycosides by genetic approaches. In addition, mechanisms of the host immune responses against pathogenic bacterial SGs have partially been resolved. This review is focused on the biological functions of SGs in mammals taking into consideration their therapeutic applications in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666875PMC
http://dx.doi.org/10.1042/BCJ20200532DOI Listing

Publication Analysis

Top Keywords

biological functions
12
steryl glycosides
8
structure metabolism
4
metabolism biological
4
functions steryl
4
glycosides mammals
4
mammals steryl
4
sgs
4
glycosides sgs
4
sgs sterols
4

Similar Publications

Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy.

Stem Cell Res Ther

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.

View Article and Find Full Text PDF

The role of BATF in immune cell differentiation and autoimmune diseases.

Biomark Res

January 2025

Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases.

View Article and Find Full Text PDF

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

Background: A significant gap exists in understanding the effectiveness of intra-class (same-class) level peer mentorship programmes designed to enhance academic performance, well-being, and student involvement among underperforming medical students. This study assessed the effectiveness of intra-class (same-class) peer mentorship programme on the academic performances, subjective well-being and school engagement of academically underperforming medical students in Nigeria.

Methods: This was a quasi-experimental research consisting of the pretest-posttest control design at Nnamdi Azikiwe University, Awka, Nigeria.

View Article and Find Full Text PDF

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!