Introduction: The COVID-19 pandemic has unveiled widespread shortages of personal protective equipment including N95 respirators. Several centers are developing reusable stop-gap respirators as alternatives to disposable N95 respirators during public health emergencies, using techniques such as 3D-printing, silicone moulding and plastic extrusion. Effective sealing of the mask, combined with respiratory filters should achieve 95% or greater filtration of particles less than 1um. Quantitative fit-testing (QNFT) data from these stop-gap devices has not been published to date. Our team developed one such device, the "SSM", and evaluated it using QNFT.

Methods: Device prototypes were iteratively evaluated for comfort, breathability and communication, by team members wearing them for 15-30min. The fit and seal were assessed by positive and negative pressure user seal checks. The final design was then formally tested by QNFT, according to CSA standard Z94.4-18 in 40 volunteer healthcare providers. An overall fit-factor >100 is the passing threshold. Volunteers were also tested by QNFT on disposable N95 masks which had passed qualitative fit testing (QLFT) by institutional Occupational Health and Safety Department.

Results: The SSM scored 3.5/5 and 4/5 for comfort and breathability. The median overall harmonic mean fit-factors of disposable N95 and SSM were 137.9 and 6316.7 respectively. SSM scored significantly higher than disposable respirators in fit-test runs and overall fit-factors (p <0.0001). Overall passing rates in disposable and SSM respirators on QNFT were 65% and 100%. During dynamic runs, passing rates in disposable and SSM respirators were 68.1% and 99.4%; harmonic means were 73.7 and 1643.

Conclusions: We present the design and validation of a reusable N95 stop-gap filtering facepiece respirator that can match existent commercial respirators. This sets a precedence for adoption of novel stop-gap N95 respirators in emergency situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665821PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242304PLOS

Publication Analysis

Top Keywords

disposable n95
12
covid-19 pandemic
8
n95 respirators
8
comfort breathability
8
tested qnft
8
ssm scored
8
n95
5
respirators
5
subject validation
4
validation reusable
4

Similar Publications

Air pollution such as particulate matter is always a serious threat to public health, thus many disposable and degradable air filters were designed to deal with this severe challenge avoiding the secondary pollution after discarding. Herein, inspired by the natural spider web structure, a hierarchical porous composite fibrous membrane containing web-like cellulose nanofibrils (CNF) was developed. The implanted porous CNF membranes with web-like among the inter-fiber voids of electrospun poly(ethylene-co-viny alcohol) fibrous membrane were realized via a layer-by-layer (LBL) method followed by an elevated-temperature drying, which exhibit a smaller diameter with one or two orders of magnitude reduction comparing with the substrate fibers.

View Article and Find Full Text PDF

Evaluation of masks and mask material suitability for bioaerosol capture.

J Occup Environ Hyg

October 2024

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.

Non-medical masks such as disposable non-medical, commercially produced cloth, and homemade masks are not regulated like surgical masks. Their performance, in terms of filtration efficiency and breathability, is variable and unreliable. This research provides a quantitative evaluation of various non-medical masks, assesses their fabrics' potential for the reduction of transmission of bioaerosols such as the SARS-CoV-2 virus, and compares them to surgical masks and N95 filtering facepiece respirators.

View Article and Find Full Text PDF

Background: During Coronavirus disease 2019 pandemic, the general public used any face-worn products they could get to overcome the shortage of N95 respirators and surgical masks. These products, often not meeting any standards, raised concerns about their effectiveness in reducing the spread of respiratory viruses.

Methods: This study quantified total outward leakage (TOL) of units from 9 face-worn product categories used by members of the general public.

View Article and Find Full Text PDF

Craniometric determinants of the fitted filtration efficiency of disposable masks.

Front Public Health

September 2024

Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.

Introduction: Exposure to harmful aerosols is of increasing public health concern due to the SARS-CoV-2 pandemic and wildland fires. These events have prompted risk reduction behaviors, notably the use of disposable respiratory protection. This project investigated whether craniofacial morphology impacts the efficiency of disposable masks (N95, KN95, surgical masks, KF94) most often worn by the public to protect against toxic and infectious aerosols.

View Article and Find Full Text PDF

Airflow detailed analysis through a face mask using the schlieren technique.

Heliyon

June 2024

Facultad de Ingeniería, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito, Universitario S/N, 31125, Chihuahua, Chih., Mexico.

This work presents an exhaustive visualization of the airflow expulsed by a person while breathing, talking, exhaling, and blowing inside a closed room wearing a disposable face mask like those used in hospitals for patient protection and those who care for them. An optical schlieren experimental arrangement was used to obtain some of the relevant physical characteristics of the airflow, such as its refractive index gradient, the distribution of temperature, and the associated velocity field for all the tests developed. We tested three face masks, one of the surgical types and the others of the N95 series with denominations KN95 and 3MN95 (Aura TC-84A-8590).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!