Podocytes are highly specialized epithelial cells that are essential for an intact glomerular filtration barrier in the kidney. Several glomerular diseases like focal segmental glomerulosclerosis (FSGS) are initially due to podocyte injury and loss. Since causative treatments for FSGS are not available until today, drug screening is of great relevance. In order to test a high number of drugs, FSGS needs to be reliably induced in a suitable animal model. The zebrafish larva is an ideal model for kidney research due to the vast amount of offsprings, the rapid development of a simple kidney and a remarkable homology to the mammalian glomerulus. Zebrafish larvae possess a size-selective glomerular filtration barrier at 4 days post fertilization including podocytes with interdigitating foot processes that are connected by a slit membrane. Adriamycin is an anthracycline which is often used in mice and rats to induce a FSGS-like phenotype. In this study, we aimed to induce a similar phenotype to zebrafish larvae by adding adriamycin to the tank water in different concentrations. Surprisingly, zebrafish larvae did not develop glomerular injury and displayed an intact filtration barrier after treatment with adriamycin. This was shown by (immuno-) histology, our filtration assay, in vivo imaging by 2-photon microcopy, RT-(q)PCR as well as transmission electron microscopy. To summarize, adriamycin is unable to induce a podocyte-related damage in zebrafish larvae and therefore major effort must be made to establish FSGS in zebrafish larvae to identify effective drugs by screenings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665694PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242436PLOS

Publication Analysis

Top Keywords

zebrafish larvae
24
filtration barrier
12
glomerular filtration
8
zebrafish
7
larvae
6
adriamycin
5
adriamycin damage
4
damage podocytes
4
podocytes zebrafish
4
larvae podocytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!