The various structural candidates of anionic, neutral, and cationic water clusters OHm(H2O)7 (m = 0, ±1) have been globally predicted by combining the particle swarm optimization method and quantum chemical calculations. Geometry optimization and vibrational analysis for the optimal structures were performed with the MP2/aug-cc-pVDZ method, and the energy profile was further refined at the CCSD(T)/CBS level. Special attention was paid to the relationships between configurations and energies, particularly the first solvation shell coordination number of OH- and OH. For OH-(H2O)7, OH(H2O)7, and OH+(H2O)7 clusters, the most stable species at room temperature are predicted to be the tetra-solvated multi-ring structure A6, the tri-solvated hemibond cage structure N1, and the single five-membered ring structure C2, respectively. The temperature effects on the stability of these three systems were also explored via Gibbs free energies. Furthermore, for the OH-(H2O)7 clusters, the assignments of vibrational transitions in the OH stretching region are in good agreement with the studies of small hydroxide ion-water clusters, and the IR spectra of two isomers (tetra-solvated multi-ring A6 and penta-solvated cage A3) may match future experimental observation well. By topological analysis and reduced density gradient analysis, the structural characteristics and bonding strengths of the studied clusters were investigated. This work indicates the excellent performance of the PSO search algorithm and CALYPSO on water clusters, and may further provide extensive insights into the chemical behavior such as the transport mechanism of OH- ions and OH radicals in the aqueous phase.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04332jDOI Listing

Publication Analysis

Top Keywords

combining particle
8
particle swarm
8
swarm optimization
8
water clusters
8
tetra-solvated multi-ring
8
clusters
7
structure
4
structure stability
4
stability infrared
4
infrared spectra
4

Similar Publications

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Microplastics in commercial marine bivalves: Abundance, characterization and main effects of single and combined exposure.

Aquat Toxicol

December 2024

Department of Life Sciences, Marine Resources, Conservation and Technology, CFE-Centre for Functional Ecology: Science for People & Planet, University of Coimbra, Coimbra 3000-456, Portugal; Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal.

Microplastics (MPs) are persistent and ubiquitous pollutants in marine ecosystems, and they can be ingested and accumulated by marine organisms with economic value to humans, such as marine bivalves, which may pose a threat to the marine food chains and to human health. In this literature review, we summarized the recent findings on the abundance and main characteristics (shape, size, color, polymer) of MPs detected in valuable marine bivalve species. Furthermore, we surveyed the major impacts triggered by MP exposure, alone or in combination with other pollutants, in these organisms.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!