A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monodisperse CdSe Quantum Dots Encased in Six (100) Facets via Ligand-Controlled Nucleation and Growth. | LitMetric

Monodisperse CdSe Quantum Dots Encased in Six (100) Facets via Ligand-Controlled Nucleation and Growth.

J Am Chem Soc

Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Published: November 2020

Zinc-blende CdSe quantum dots (QDs) encased in six equal (100) facets are synthesized in a noncoordinating solvent. Their monodispersed size, unique facet structure, and single crystallinity render the narrowest ensemble photoluminescence for CdSe QDs (full width at half-maximum being 52 meV). The nucleation stage can selectively form small-size CdSe QDs (≤3 nm) as seeds suited for the growth of cube-shaped QDs by reducing the concentration of cadmium carboxylates (Cd(RCOO)) as the sole source of ligands. While resulting in poorly controlled nucleation, chloride-ion ligands introduced in the form of soluble CdCl(RCOO) ( = 0.1∼0.2) would thermodynamically stabilize the cadmium-terminated (100) facets yet kinetically accelerate the deposition of selenium ions onto the (100) facets. Results suggest that it is fully feasible to synthesize QDs simultaneously with monodisperse size and surface structure through ligand-controlled nucleation and growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c06914DOI Listing

Publication Analysis

Top Keywords

100 facets
16
cdse quantum
8
quantum dots
8
ligand-controlled nucleation
8
nucleation growth
8
cdse qds
8
qds
5
monodisperse cdse
4
dots encased
4
0
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!