The intramolecular H NMR dipole-dipole relaxation of molecular fluids has traditionally been interpreted within the Bloembergen-Purcell-Pound (BPP) theory of NMR intramolecular relaxation. The BPP theory draws upon Debye's theory for describing the rotational diffusion of the H-H pair and predicts a monoexponential decay of the H-H dipole-dipole autocorrelation function between distinct spin pairs. Using molecular dynamics (MD) simulations, we show that for both -heptane and water this is not the case. In particular, the autocorrelation function of individual H-H intramolecular pairs itself evinces a rich stretched-exponential behavior, implying a distribution in rotational correlation times. However, for the high-symmetry molecule neopentane, the individual H-H intramolecular pairs do conform to the BPP description, suggesting an important role of molecular symmetry in aiding agreement with the BPP model. The intermolecular autocorrelation functions for -heptane, water, and neopentane also do not admit a monoexponential behavior of individual H-H intermolecular pairs at distinct initial separations. We suggest expanding the autocorrelation function in terms of modes, provisionally termed molecular modes, that do have an exponential relaxation behavior. With care, the resulting Fredholm integral equation of the first kind can be inverted to recover the probability distribution of the molecular modes. The advantages and limitations of this approach are noted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c08078 | DOI Listing |
N Engl J Med
January 2025
From the National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation (C.E.G., E.P.M., N.W., P.R., I.L.W., A.M.B.) and University of Pittsburgh School of Medicine-UPMC Hillman Cancer Center (C.E.G., N.W., P.R., A.M.B.) - both in Pittsburgh; AGO-B and Helios Klinikum Berlin-Buch, Berlin (M.U.), the National Center for Tumor Diseases, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg (A.S.), Evangelische Kliniken Gelsenkirchen, Gelsenkirchen (H.H.F.), Arbeitsgemeinschaft Gynäkologische Onkologie-Breast and Sana Klinikum Offenbach, Offenbach (C.J.), the Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (P.A.F.), German Breast Group, Neu-Isenburg (P.W., S.L.), and the Center for Hematology and Oncology Bethanien, Goethe University, Frankfurt (S.L.) - all in Germany; National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-S.H.); Instituto do Câncer do Estado de São Paulo, São Paulo (M.S.M.); Orlando Health Cancer Institute, Orlando, FL (E.P.M.); Hospital Universitario La Paz-Instituto de Investigación del Hospital Universitario La Paz, Madrid (A.R.); L'Institut du Cancer de Montpellier-Val d'Aurelle, Montpellier (V.D.), Institut Bergonié, INSERM Unité 1312, and Université de Bordeaux UFR Sciences Médicales, Bordeaux (H.R.B.) - all in France; Providence Cancer Institute, Portland, OR (A.K.C.); the Department of Surgery, Oncology, and Gastroenterology, University of Padua, and Oncology 2, Istituto Oncologico Veneto IRCCS, Padua (V.G.), and the Cancer Center Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo (E.R.C.) - all in Italy; Stanford University School of Medicine, Stanford, CA (I.L.W.); the National Cancer Institute, Mexico City (C.A.-S.); Yale University School of Medicine, Yale Cancer Center, and Smilow Cancer Hospital, New Haven, CT (M.P.D.); the All-Ireland Cooperative Oncology Research Group (J.P.C.), and the Oncology Unit, Cancer Clinical Trials and Research Unit, Beaumont RCSI Cancer Centre, and Cancer Trials Ireland (B.T.H.) - all in Dublin; Fudan University Shanghai Cancer Center, Shanghai, China (Z.S.); Institute for Oncology and Radiology of Serbia, Belgrade (L.S.); Grupo Médico Ángeles, Guatemala City, Guatemala (H.C.-S.); Roche Products, Welwyn Garden City, United Kingdom (A.K., A.S.); and F. Hoffmann-La Roche, Basel, Switzerland (C.L., T.B., B.N., E.R.).
Background: Patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer with residual invasive disease after neoadjuvant systemic therapy have a high risk of recurrence and death. The primary analysis of KATHERINE, a phase 3, open-label trial, showed that the risk of invasive breast cancer or death was 50% lower with adjuvant trastuzumab emtansine (T-DM1) than with trastuzumab alone.
Methods: We randomly assigned patients with HER2-positive early breast cancer with residual invasive disease in the breast or axilla after neoadjuvant systemic treatment with taxane-based chemotherapy and trastuzumab to receive T-DM1 or trastuzumab for 14 cycles.
Radiology
January 2025
From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).
Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.
Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
December 2024
College of Charleston, Charleston, South Carolina, U.S.A.
Purpose: To compare the biomechanics of a drop vertical jump (DVJ) landing task and functional outcomes among patients with anterior cruciate ligament reconstruction (ACLR) with quadriceps tendon (QT) and patellar tendon (PT) autografts.
Methods: Physically active patients who underwent primary ACLR with either a QT or PT autograft were included in this study. All were within 6 months to 2 years after surgery and cleared for return to physical activity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!