A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical lateral and axial sensitivity limits and choices of molecular reporters for Cherenkov-excited luminescence in tissue during x-ray beam scanning. | LitMetric

Purpose: Unlike fluorescence imaging utilizing an external excitation source, Cherenkov emissions and Cherenkov-excited luminescence occur within a medium when irradiated with high-energy x-rays. Methods to improve the understanding of the lateral spread and axial depth distribution of these emissions are needed as an initial step to improve the overall system resolution.

Methods: Monte Carlo simulations were developed to investigate the lateral spread of thin sheets of high-energy sources and compared to experimental measurements of similar sources in water. Additional simulations of a multilayer skin model were used to investigate the limits of detection using both 6- and 18-MV x-ray sources with fluorescence excitation for inclusion depths up to 1 cm.

Results: Simulations comparing the lateral spread of high-energy sources show approximately 100  ×   higher optical yield from electrons than photons, although electrons showed a larger penumbra in both the simulations and experimental measurements. Cherenkov excitation has a roughly inverse wavelength squared dependence in intensity but is largely redshifted in excitation through any distance of tissue. The calculated emission spectra in tissue were convolved with a database of luminescent compounds to produce a computational ranking of potential Cherenkov-excited luminescence molecular contrast agents.

Conclusions: Models of thin x-ray and electron sources were compared with experimental measurements, showing similar trends in energy and source type. Surface detection of Cherenkov-excited luminescence appears to be limited by the mean free path of the luminescence emission, where for the given simulation only 2% of the inclusion emissions reached the surface from a depth of 7 mm in a multilayer tissue model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658603PMC
http://dx.doi.org/10.1117/1.JBO.25.11.116004DOI Listing

Publication Analysis

Top Keywords

cherenkov-excited luminescence
16
lateral spread
12
experimental measurements
12
high-energy sources
8
sources compared
8
compared experimental
8
luminescence
5
sources
5
theoretical lateral
4
lateral axial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!