Supramolecular Non-Helical One-Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol.

Angew Chem Int Ed Engl

Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.

Published: February 2021

The design and assembly of photoelectro-active molecular channel structures is of great importance because of their advantages in charge mobility, photo-induced electron transfer, proton conduction, and exciton transport. Herein, we report the use of racemic 9,9'-diphenyl-[2,2'-bifluorene]-9,9'-diol (DPFOH) enantiomers to produce non-helical 1D channel structures. Although the individual molecule does not present any molecular symmetry, two pairs of racemic DPFOH enantiomers can form a C -symmetric closed loop via the stereoscopic herringbone assembly. Thanks to the special symmetry derived from the enantiomer pairs, the multiple supramolecular interactions, and the padding from solvent molecules, this conventionally unstable topological structure is achieved. The etching of solvent in 1D channels leads to the formation of microtubes, which exhibit a significant lithium-ion conductivity of 1.77×10  S cm, indicating the potential research value of this novel 1D channel structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202012548DOI Listing

Publication Analysis

Top Keywords

channel structures
8
dpfoh enantiomers
8
supramolecular non-helical
4
non-helical one-dimensional
4
one-dimensional channels
4
channels microtubes
4
microtubes assembled
4
assembled enantiomers
4
enantiomers difluorenol
4
difluorenol design
4

Similar Publications

Background: 'Intellectual assets' generated in traditional university settings, that may not fit the interests of the standard 'valuation criteria' (i.e. commercially profitable), such as non-pharmacological dementia care research, often remain siloed within their respective research disciplines and originating institutions.

View Article and Find Full Text PDF

Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics.

Microfluid Nanofluidics

July 2024

Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA.

The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries.

View Article and Find Full Text PDF

Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives.

View Article and Find Full Text PDF

Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.

View Article and Find Full Text PDF

Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!