Growing evidence has highlighted the immune response as an important feature of carcinogenesis and therapeutic efficacy in non-small cell lung cancer (NSCLC). This study focused on the characterization of immune infiltration profiling in patients with NSCLC and its correlation with survival outcome. All TCGA samples were divided into three heterogeneous clusters based on immune cell profiles: cluster 1 ('low infiltration' cluster), cluster 2 ('heterogeneous infiltration' cluster) and cluster 3 ('high infiltration' cluster). The immune cells were responsible for a significantly favourable prognosis for the 'high infiltration' community. Cluster 1 had the lowest cytotoxic activity, tumour-infiltrating lymphocytes and interferon-gamma (IFN-γ), as well as immune checkpoint molecules expressions. In addition, MHC-I and immune co-stimulator were also found to have lower cluster 1 expressions, indicating a possible immune escape mechanism. A total of 43 differentially expressed genes (DEGs) that overlapped among the groups were determined based on three clusters. Finally, based on a univariate Cox regression model, prognostic immune-related genes were identified and combined to construct a risk score model able to predict overall survival (OS) rates in the validation datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754023PMC
http://dx.doi.org/10.1111/jcmm.16092DOI Listing

Publication Analysis

Top Keywords

infiltration' cluster
12
non-small cell
8
cell lung
8
cluster
8
cluster cluster
8
'high infiltration'
8
immune
7
characterizing heterogeneity
4
heterogeneity non-small
4
lung tumour
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!