Burkholderia cepacia complex (Bcc) members have clinical relevance as opportunistic pathogens in patients with cystic fibrosis and are responsible of numerous nosocomial infections. These closely related bacteria are also reported as frequent contaminants of industrial products. In this retrospective study, we use PCR and recA gene sequence analysis to identify at species level Bcc isolates recovered from massive consumption products and industrial processes in Argentina during the last 25 years. The sequences obtained were also compared with recA sequences from clinical Bcc isolates deposited in GenBank database. We detected Bcc in purified water and preserved products from pharmaceutics, cosmetics, household cleaning articles, and beverages industries. B. contaminans (which is prevalent among people with cystic fibrosis in Argentina) was the most frequent Bcc species identified (42% of the Bcc isolates studied). B. cepacia (10%), B. cenocepacia (5%), B. vietnamiensis (16%), B. arboris (3%), and the recently defined B. aenigmatica (24%) were also detected. Rec A sequences from all B. cepacia and most B. contaminans industrial isolates obtained in this study displayed 100% identity with recA sequences from isolates infecting Argentinean patients. This information brings evidence for considering industrial massive consumption products as a potential source of Bcc infections. In addition, identification at species level in industrial microbiological laboratories is necessary for a better epidemiological surveillance. Particularly in Argentina, more studies are required in order to reveal the role of these products in the acquisition of B. contaminans infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-020-00151-z | DOI Listing |
Viruses
December 2024
World Health Organization, 1202 Geneva, Switzerland.
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.
View Article and Find Full Text PDFInfect Drug Resist
December 2024
Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China.
Vet Sci
November 2024
National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
The complex (Bcc) is a group of bacteria with similar biological properties which are an important cause of opportunistic infections. Identification of the Bcc species is important to understand clinical outcomes in human patients. However, there are few studies of Bcc species infecting companion animals such as cats.
View Article and Find Full Text PDFJ Microbiol
November 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
Cureus
October 2024
Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND.
Introduction complex(BCC) is one of the most common polymyxin-resistant Gram-negative bacilli isolated in the clinical microbiological laboratory. They are often underreported when conventional biochemicals are used for identification, due to their similarity to other non-fermenting bacilli. It is essential to identify BCC using simple biochemical tests with good reliability to ease the identification of BCC in resource-limited settings and initiate treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!