Expression pattern of aluminum (Al) tolerance genes is one of the major determinants of Al avoidance/tolerance within plant cultivars. We have performed transcriptome analysis of two contrasting (Al-tolerant, Disang; Al-sensitive, Joymati) cultivars of India's North Eastern region, an indica rice diversity hotspot, on exposure to excess Al treatment in acidic condition. Co-expression analysis and SNPs enrichment analysis proposed the role of both trans-acting and cis-acting polymorphisms in Al signaling in the Al-tolerant cultivar. We proposed ten major genes, including arginine decarboxylase, phytase, and beta-glucosidase aggregating factor as candidates responsible for Al tolerance based on transcriptome analysis. Al stress led to changes in the alternative splicing profile of the Al-tolerant cultivar. These studies demonstrated the transcriptional variations affiliated to Al avoidance/tolerance in contrasting indica rice of North East India and provided us with several candidate genes responsible for Al tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-020-01581-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!