Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was aimed at synthesizing polyethyleneimine-coated magnetic nanoparticles and evaluating their effect on pathogenic bacteria. Polyethyleneimine-coated magnetite (PEIMnF) and nickel ferrite (PEINF) nanoparticles were succesfully synthesized and their surface groups, morphology and chemical structures were characterized using ATR-FTIR (Attenuated Total Reflectance Fourrier Transformed Infra-Red) and SEM (Scanning Electron Microscopy). TGA (Thermogravimetric analysis) was used to analyse the thermal behaviour and stability of synthesized nanomaterials. The minimal inhibitory concentration (MIC) values of the polyethylene imine coated magnetite and nickel ferrite nanomaterials against , and was found to be 10 mg/mL. Both nanomaterials (PEIMnF and PEINF) showed very excellent and concentration-dependent biofilm inhibition especially at the highest test concentration of 10 mg/mL at which PEIMnF inhibited biofilm formation on (89.04 ± 0.50%), (82.85 ± 2.42%) and (91.37 ± 0.66%). At this concentration, PEINF equally inhibited biofilm formations of (90.48 ± 2.05%), (87.04 ± 1.59%) and (90.94 ± 1.03%). Only PEINF showed a concentration-dependent violacein inhibition with highest inhibition of 51.2 ± 3.5% at MIC and quorum sensing with inhibition zones of 16.3 ± 1.0 mm at MIC and 11.5 ± 0.5 mm at MIC/2 which could be attributed to the presence of nickel. The nanomaterials inhibited swimming and swarming motilities in PA01 and it was found that at the same concentration, swimming inhibition was greater than swarming inhibitions and PEINF showed better inhibition than PEIMnF in both models. Polyethyleneimine-coated magnetite and nickel ferrite nanomaterials could be used in overcoming health problems associated with microbial infections and resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648808 | PMC |
http://dx.doi.org/10.1007/s13205-020-02509-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!